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What is Data Marketplace ?

l A good deep learning model relies on huge good-quality data.
Ø Trainers want to enrich their internal data sets with external data.

l As a result, data marketplaces emerge,
Ø providing data exchanging platforms for both enterprises and individuals.
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Cloud-based Data Marketplace

l Traditional Cloud-based Data Marketplace
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Ø Model owners want to purchase the most valuable data to improve their models,

Ø but data owners may provide useless/irrelevant data that do not improve model 

performance.
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How to evaluate the most valuable data for 

data shoppers' models?



Intuitive ML Data Evaluation

l Cloud needs to access both sellers' data and shoppers' models, but it is untrusted.

l Data and models may be sensitive for both sellers and shoppers!
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Our Goal:

Provide privacy-preserving ML data
evaluation on data marketplaces



Existing Privacy Protection Solutions

l Existing privacy protection solutions
Ø Homomorphic Encryption (HE), Secure Multi-party Computation (MPC)

Ø Can preserve both the privacy and functionality of data/models on the cloud

Ø Limitations

• high computational and communication overhead

• not specially designed for ML data evaluation
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We need a lightweight encryption approach that is specially designed for 
ML data evaluation.  



Our Solution

l We design a lightweight encryption approach to protect the privacy of 
data/models.
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l We provide a ML evaluation approach that is compatible with our 
lightweight encryption approach

Ø So, the encrypted data/models cannot be directly evaluated by the cloud.

Ø Instead of accessing the original data, we need extra information and 
mechanisms to evaluate valuable data.



Our System
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l Data sellers upload encrypted data to the cloud for sale.

l The cloud helps the shopper to 
evaluate sellers' encrypted data. 

l Data shopper uploads encrypted 
model and retrieves prediction 
values to select/validate data.
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Rationale behind Our ML Encryption
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lWe need inner product computation over ciphertexts. 
Ø For most neural networks, both common matrix and convolution computation can be 

decomposed to inner product computation. 
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Lightweight ML Encryption
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lWe use lightweight inner-product functional encryption (IFE) and matrix 
transformation to encrypt data/models.
Ø Still can use encrypted model to predict/train encrypted data
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lWe use lightweight inner-product functional encryption (IFE) and matrix 
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Rationale behind Data Selection

12

l Data selection is based on active learning.

l Valuable data have uncertain prediction values.

Ø located near the decision boundary, i.e., provide 
more information

l Active learning uses prediction values (not original data) to evaluate data.  

Uncertain prediction value: [0.495, 0.555]

Valuable data point

Active learning



Data Selection
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1. Data sellers and shopper upload their encrypted data and model.
2. The cloud performs prediction operations.

3. Data shopper collects encrypted prediction values to select valuable data.
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Data Selection
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1. Data sellers and shopper upload their encrypted data and model.
2. The cloud performs prediction operations.

3. Data shopper collects encrypted prediction values to select valuable data.
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Another Problem:

Data selection only considers the informativeness of
data, but not labels, not relevance.

What if the selected data contain unintentionally
mislabeled data or irrelevant data?
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Rationale behind Data Validation

l The shopper and cloud cannot directly see selected data to estimate quality. 
l Indirect approach:  let the model "try" data and check model performance.

Ø "try" : use the selected data to retrain the shopper' s model.
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Rationale behind Data Validation

l The shopper and cloud cannot directly see selected data to estimate quality. 
l Indirect approach:  let the model "try" data and check model performance.
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Data Validation

1. Cloud uses the selected data to retrain the shopper' s encrypted model.
2. Cloud uses the retrained model to predict uniformly distributed data.

3. The shopper collects encrypted prediction values to estimate data quality.
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Data Validation

1. Cloud uses the selected data to retrain the shopper' s encrypted model.
2. Cloud uses the retrained model to predict uniformly distributed data.

3. The shopper collects encrypted prediction values to estimate data quality.
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Experiment Setup

l We simulate
Ø 100 sellers and 1 shopper
Ø divide MINIST to 101 subsets, assigned to sellers and shopper

l We evaluate
Ø benefits of our data selection
Ø the accuracy of our data validation
Ø computational overhead
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Benefits of Our Data Selection

l Compared with random selection, our data selection can reduce about 
60% prediction errors.
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* Model 1 and 2 are trained with 5500 and 55000 samples, respectively.



Accuracy of Our Data Validation

l Simulate low-quality samples that are most likely to evade data validation 
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* We split samples into multiple subsets and validate them one by one.
* Validation granularity means that the size of validation subsets.



Computational Overhead

l Compared with homomorphic encryption based approach (E2DM)
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* We encrypt a six-layer CNN model and measure relevant operations



Conclusion

l A privacy-preserving and efficient ML data evaluation framework on 
data marketplaces

l A new lightweight ML encryption protocol that can preserve both 
privacy and functionality of data/models on the cloud
Ø Based on IFE and matrix transformation

l Privacy-preserving Data Selection and Validation
Ø Can select valuable data and validate the data quality
Ø Do not disclose the original data and models
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Thank you!
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Backup: IFE-based Matrix Encryption
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l We can use inner product functional encryption to enable matrix 
or convolution computation over ciphertexts. 

l The result is plaintext, we apply matrix transformation to hide the result. 
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Backup: Our ML Encryption
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l IFE is only used to encrypt the first layer since it only support simple inner 
product computation.

l Remaining layers are encrypted by matrix transformation (see our paper).
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Backup: Our ML Encryption
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l During prediction, the output of each layer is 𝐶!" × 𝑍!" ( 𝑍!" is original output).

l We can decrypt the output by multiply 𝐶!#".
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Backup: Data Validation
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l To evaluate data of different values, we set a variable threshold T.
l T is often the previous prediction errors. If the current prediction errors < T,

we can say the performance is improved, and the data quality is good.

Observe prediction errors to 

estimate data quality
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Backup: TEE
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l TEE may leak some sensitive information.
Ø Cache Attacks

Ø Fault injection attacks

l TEE has some memory limits.
Ø For SGX, 128 MB


