
SGX-Cube: An SGX-Enhanced Single Sign-On
System against Server-side Credential Leakage

Songsong Liu1, Qiyang Song2, Kun Sun1, and Qi Li2

1 George Mason University, Fairfax, USA
{sliu23,ksun3}@gmu.edu

2 BNRist, Tsinghua University, Beijing, China
ashes.sqy126@gmail.com, qli01@tsinghua.edu.cn

Abstract. User authentication systems enforce the access control of crit-
ical resources over Internet services. The pair of username and password
is still the most commonly used user authentication credential for online
login systems. Since the credential database has consistently been a main
target for attackers, it is critical to protect the security and privacy of
credential databases on the servers. In this paper, we propose SGX-Cube,
an SGX-enhanced secure Single Sign-On (SSO) login system, to prevent
credential leakage directly from the server memory and via brute-force at-
tacks against a stolen credential database. When leveraging Intel SGX to
develop a scalable secure SSO system, we solve two main SGX challenges,
namely, small secure memory size and the limited number of running
threads, by developing a record-based database encrypted scheme and
placing only authentication-related functions in the enclave, respectively.
We implement an SGX-Cube prototype on a real SGX platform. The
experimental results show that SGX-Cube can effectively protect the con-
fidentiality of user credentials on the server side with a small performance
overhead.

Keywords: SSO · SGX · Credential Leakage.

1 Introduction

User authentication is a common security mechanism in Internet applications to re-
strict unauthorized access to member-only areas on websites. Username/password
is still the most commonly used user authentication method for online login sys-
tems. After being securely delivered to the authentication system, the user
inputted username and password are validated by checking with the credentials
stored in a credential file or database.

It continues as a challenge for Internet service providers to protect user
credentials including passwords, which may be leaked out from either non-volatile
storage (e.g., hard disk) or volatile storage (e.g., RAM). After breaking into
the target server system, attackers can dump the credential database and then
launch offline brute force attacks. Alternatively, attackers can manage to steal
user credentials in plaintext from RAM. For instance, attackers can remotely
read the memory content from victim servers by exploiting Heartbleed bug in the



2 S. Liu et al.

OpenSSL library [6]. Even worse, when an attacker successfully breaks into the
victim server, it can observe the entire credential verification process and easily
retrieve credentials from memory. An advanced persistent attacker may collect
most user credentials after stealthily residing in the server for a long enough time.
In cloud environments, curious-but-honest service providers have the privilege to
capture sensitive data in the memory of virtual machines, so it becomes another
security concern on protecting user credentials in untrusted clouds.

Considering the difficulty in protecting user credentials, more Internet service
providers choose to mitigate the management of various usernames and passwords
by using Single Sign-On (SSO) services provided by third-party trusted companies
such as Google [1] and Facebook [27]. By verifying a single credential on the
SSO site, one user can obtain different authorized tokens to access multiple
Internet services. It requires both users and Internet service providers to trust
the third-party SSO sites with their credentials. However, similar to traditional
online login systems, the SSO service providers are also troubled by the credential
leakages from either hard disk or RAM [26]. Protecting the user credential in the
SSO system still requires more effort.

Recently, researchers focus more on preventing information leakage during
data processing. For instance, homomorphic encryption schemes [7] can ensure the
credentials staying in ciphertext when being processed. Though it is promising
to enhance the security of sensitive data in memory dramatically, it has to
further reduce the overhead before being widely deployed. Another trend is to
process sensitive data in an isolated and trusted execution environment. Thus,
even if the host OS is malicious, the sensitive data can be processed in trusted
environments securely. For instance, Intel Software Guard Extensions (SGX)
provides a process-level isolation mechanism to protect user-level sensitive code
and data from malicious OS [12]. On the client side, SGX has been used to
protect password managers [8]. On the server side, SGX has been used to protect
a credential encryption module [15]. However, it still requires further studies on
using SGX to protect SSO services.

In this paper, we develop SGX-Cube, an SGX-enhanced secure SSO system,
to protect user credentials on SSO servers. It can not only successfully prevent
credential leakage from memory, but enhance the security of credential databases
against offline brute-force attacks. Our system consists of three major components,
namely, authentication server, credential database, and application server. As
the core of SGX-Cube, the authentication server runs inside the SGX enclave to
process authentication requests. It protects the credentials in the memory even if
the host OS is compromised. When a user requests to access an application server,
the login request will be forwarded to the authentication server. After successful
authentication, the authentication server generates and delivers an authorization
code to the user. Then the user uses this authorization code to request the
corresponding token and access the desired service from the application server.

We implement a prototype of SGX-Cube on a computer supporting SGX
v1 instruction set. To protect the transmission of credentials, we implement an
HTTPS server inside the enclave. We use a lightweight database management



SGX-Cube 3

system SQLite as the credential database and a lightweight web server as the
application server supporting OAuth 2.0 scheme. SGX-Cube is flexible to support
other database systems and application servers. Our test-bed supports up to 4
threads in an enclave concurrently. The experimental results show that SGX-
Cube introduces an average 0.6× extra time cost for a single thread in the
authentication server. For a single request, it only takes about 1.5 ms for each
authentication thread to complete all its tasks. For concurrent 500 requests, the
average request processing time is about 1.7 ms. Our security analysis shows that
SGX-Cube can effectively increase the security of the SSO system by preventing
credential leakage from both memory and hard disk. In summary, we make the
following contributions:

– We propose SGX-Cube, an SGX-enhanced secure SSO system, to increase the
security and privacy of user credentials on the server by placing operations
on credentials inside the SGX enclave. We further propose a record-based
encryption scheme to improve authentication efficiency.

– We formulate the security of SGX-Cube in two aspects: confidentiality and
integrity. Then, we analyze the security of SGX-Cube against both online
attacks and offline attacks.

– We implement a prototype of SGX-Cube using SGX v1. The experimental
results show that it is a practical solution with a small performance overhead.

2 Background

2.1 Intel SGX

Intel Software Guard Extensions (SGX) [12] provides user-level isolated execution
environments (enclave) to protect the confidentiality and integrity of application
code and data in a reserved memory region named the Enclave Page Cache
(EPC), which is encrypted and authenticated by a Memory Encryption Engine
(MEE) hardware module. SGX protects an application against illegal access
from other applications, OS, and hypervisor. An SGX application is divided into
two components: a trusted component and an untrusted component. The trusted
component contains the code and data that need to be protected inside the
enclave, while the untrusted component contains the rest part. To bridge these
two components, SGX uses the enclave entry call (Ecall) and outside call (Ocall)
mechanisms, where Ecall is the function call that enters the enclave from outside
and Ocall is the function call that calls an untrusted outside function from an
enclave. The code inside an enclave can only be executed in the user mode. The
maximum EPC size is limited (128 MB for SGX v1, 256 MB for SGX v2). When
the configured enclave size is larger than the EPC size, the performance overhead
becomes inevitably high due to paging between EPC and normal memory.

2.2 Single Sign-on (SSO) Systems

A single sign-on (SSO) system provides an authentication process that allows
a user to access multiple application servers with one set of login credentials.
Therefore, a user only needs to log in once and then gain access to different
applications without re-entering the login credentials at each application server.



4 S. Liu et al.

As third-party authentication systems, the SSO systems are trusted by both
end users and a number of application servers. One SSO system contains three
main parties: user, identity provider (IDP), and relying party (RP), where RPs
are the applications/websites to be accessed by the users and the IDPs are
responsible for providing the authentication services. The workflow is described
as follows. First, the client connects to the RP (i.e., application server), which
then sends the authorization request to the client. Next, after verifying the IDP
(i.e., authentication server) via remote attestation, the client sends its login name
and password to the IDP. After successfully verifying the client, the IDP generates
an authentication token and sent it to the client. Next, the client forwards the
authentication token to the RP. After verifying the client with the provided
authentication token, the RP can request the user information (e.g., username)
from the IDP and grant the services to the client.

3 Threat Model and Assumption
We focus on protecting the server-side login process and ensuring the confidential-
ity of user credentials on the server side. In this work, we refer user credentials
to the username and password only, though other credentials may also include
sensitive information such as PIN or credit card information. The credentials
experience three states in the complete login procedure, namely, data-in-motion,
data-in-use, and data-in-rest. Therefore, the attacker may commit a series of
attacks against each state of credentials to defeat the user authentication process
and collect valuable username/password and other user credential information.

In our threat model, we consider a strong attacker, who can commit not only
the offline attack but also the online attack. To commit the offline attack, the
attacker can extract the credential database from the server, then analyze it with
the known information to infer other sensitive information or even brute force
the encrypted credentials directly. To commit the online attack, the attacker
would compromise the authentication server and users. It targets both the data-
in-motion and the data-in-use. The attacker may retrieve plaintext credentials by
eavesdropping the communication channels connected to the authentication server,
monitoring the memory of the server, manipulating login requests, or creating
new known-plaintext records in our database to launch the chosen-plaintext
attack. If it is result-less to reveal the desired credentials, the attacker may try
to circumvent the authentication process via manipulating the authentication
process in the memory or splicing stored credential records.

We assume the Intel SGX can be trusted. Although the SGX has become
vulnerable to high-cost side-channel attacks [18], lots of efforts have been made
to mitigate these attacks in both software [22] and hardware [13, 19]. We target
at protecting the user credentials on the server side, and the credential on the
client side can be protected by other SGX-based solution [8].

4 System Design

4.1 System Overview

Figure 1 shows the overall architecture of our SGX-enhanced secure SSO login
system. When an application server attempts to use our SSO service, its first



SGX-Cube 5

Client

(Browser)

Application 

Server

(Web Server)

Auth Server

(SGX Enclave)

Credential 

Database

(0)(3)(4)

(2)(1)(2)

(1)(3)(4)

Database(4)Attestation Server (0)

Identity Provider

Relying Party

User

Client

(Browser)

Application Server

(Web Server)

Auth Server

Credential 

Database

(0)(3)(4)

(2)

(1)(3)(4)

Database(4)Attestation Server (0)

Identity Provider

Relying Party

User

Response 

Module 

(SGX Enclave)

Authentication 

Module

(SGX Enclave)

(2)

(3)

(4)

(1)(2)

Fig. 1. The Architecture of SGX-Cube. (0) Attestation; (1) Login Request; (2) Creden-
tial Handling; (3) Authorization Grant; (4) Service Access.

step is to authenticate the SSO authentication server. It will request a remote
attestation to ensure the integrity of the authentication server running in the SGX
enclave. An attestation server may be required to facilitate the attestation [12].
After a successful remote attestation, it can verify the authentication server.

Based on the standard SSO scheme, our SGX-Cube is divided into three main
components: Identity Provider (IDP), Relying Party (RP), and user. These three
components interact with each other during the complete login procedure.

Identity Provider (IDP). As the core component of the SSO login system, the
IDP consists of two main components, namely, an enclave-based authentication
server and a credential database.

The authentication server runs inside the enclaves. It is responsible for con-
ducting remote attestation, receiving the user’s login credentials from clients,
verifying user login credentials against the credential database, generating an
authentication token, and then sending the token to both the client to facilitate
the authentication of the client to the application server. Here, the user login cre-
dential contains the username and the password. The authentication token can be
customized according to the requirements of the specific application server. The
authentication server also handles new user registration, password update/reset,
and account revocation. Depending on its function, we split the authentication
server into two modules in two separate enclaves: the response module and the
authentication module. Splitting the authentication server into two enclaves, we
intend to mitigate risks of the credential processing (authentication module) by
isolating it from the potential vulnerabilities of network interaction (response
module). The response module is to establish secure communication channels
with the outside (the application server and the client) to defend eavesdropping
and tampering. It handles all the requests from them. The authentication module
processes credential related tasks. During the login procedure, all the credentials
are passed from the response module to the authentication module via a secure
communication channel of intra-platform.

The credential database stores user credential information for user authenti-
cation. The privacy of the database is protected when stored on the hard disk.
Instead of encrypting the entire database with one key, we protect each column
of the database table with a unique key (subkey). The subkeys are encrypted



6 S. Liu et al.

Browser Web Server Auth Server

Login Request

Redirected URI & Client ID

Login Request & Client ID

Check Client Request

Login Form Page

User's Credential

Check User's Credential

Authorization Code & Redirected URI

Authorization Code Authorization Code 

Client ID & Client Secret

Check Authorization Code

Access Token

User Token & Web Resource
User Information

Access Token

Check Access Token

User RP IDP

(1)

(2)

(3)

(4)

Fig. 2. The Flow of user Login Process

when stored on disk and in normal memory and are only decrypted inside the
enclave. Towards achieving a record-based encryption, the fields of one record
are bound together [5]; see Section 4.3. By using record-based encryption, the
query operations can be applied to the encrypted values directly. The credential
database can be organized by the default DBMS (database management system)
without any modification. After calculating the encrypted value of the inputted
username, the authentication server queries the database and reads the encrypted
value of the corresponding password into the enclave.

Relying Party (RP). The RP could be any kind of off-the-shelf application
server on the internet. It provides Internet services to the user after the user is
correctly authenticated by the IDP. All the login requests are redirected to the
IDP conducting the credential verification. It only receives the authorization code
from the user and verifies the code from IDP via a secure communication channel.
If the code is correct, the IDP would allocate the token and corresponding user
information to the application server. The user information is used as the user
identity on the application server. Based on this identity in its database, the
application server creates or updates the record for the authorized user.

User. In our design, the user should get a seamless, out-of-the-box, easy to use
client. The client could be a typical browser or self-developed application that
supports SSO scheme. It assists user to get the authorization from IDP and
access the desired Internet service of RP.

4.2 Login Procedure

In this section, we discuss each stage of the login procedure. We divide a com-
plete login procedure into four stages, as shown in Figure 2. While the remote
attestation stage is not a part of the login procedure, it is an essential job to be
conducted before the login procedure.

Stage 0: Attestation. Before the application server accepts a login request,
it is necessary to ensure that the IDP is trustworthy. It conducts the remote
attestation to verify that 1) the enclave is running on a genuine SGX enabled



SGX-Cube 7

platform, and 2) the authentication server code running inside the enclave has
not tampered with [14]. Literally, the application server should attest to both two
modules of the authentication server. However, since the authentication module
is not accessible from the outside, the remote attestation is only conducted
on the response module directly. To solve this problem, we let the response
module and authentication module to conduct the local attestation [28] for each
other during the initialization. Until the dual local attestation is successful,
the response module will accept the remote attestation request. The response
module will generate a response that contains a signed hash value of the software
running inside the enclave and the enclave environment. According to Intel [23],
the application server needs to forward the remote attestation response to the
response module, which stores the keying material to verify the hash value. To
ensure the trustworthiness of IDP, the application server could start the remote
attestation periodically (e.g., 24 hours). Otherwise, the remote attestation could
be conducted by a trusted third-party CA. The application server only needs to
verify the certification of the authentication server.

Stage 1: Login Request. When a user requests to access the resource of the
application server, the application will check if the request contains a valid
token generated by itself. If yes, the user can access the desired Internet service
directly. Otherwise, the login request is forwarded to the authentication server.
A secure communication channel is established between the user client and
the authentication server. The certification of the authentication server will be
checked during the connection construction phase. Then the user client sends the
login request to the authentication server via the new-built secure communication
channel. The authentication server replies to the login request with a login
interface (i.e., web page), which will be shown on the user’s client.

Stage 2: Credential Handling. After the secure communication channel is
established, the user can input the credential on the client side. The secure channel
ensures that the user credential is directly delivered into the enclave on the
authentication server. Once the authentication server receives the user credential,
it encrypts the username and uses it as the key to query the corresponding record
from the credential database. The encrypted password is read into the enclave to
conduct the password verification. The plaintext of the password won’t leak out
of the enclave. If the credential is valid, the authentication server will generate
an authorization code and return it to this user.

Stage 3: Authorization Grant. For the user, this stage is transparent. No
further operations are required. After receiving the authorization code from the
authentication server, the user client will resend it to the application server
automatically. The application server uses this authorization code to request
the access token from the authentication server. Similar to stage 2, a secure
communication channel is established between the application server and the
authentication server. The authentication server verifies the authorization code.
If valid, an access token is generated and allocated to the application server.

Stage 4: Service Access. In this stage, the application server needs to request
user information from IDP. The authentication server receives the request of



8 S. Liu et al.

user information with the access token from the application server. If the access
token is valid, the application server will receive corresponding user information.
The user information is used as the user identity on the application server. The
application server stores the user information in its own database allocates a user
token and opens the resource access entrance to the user. After that, the user
can access the desired Internet service. The whole login procedure is completed.

4.3 Credential Storage

The stored user credentials include three major elements: username, password,
and user information. In our scheme, both username and password are encrypted,
which increases the entropy of user credentials against brute-force attacks. More-
over, the username may contain sensitive information and provide the attackers
with a good hint, directly or indirectly, to speed up the password cracking
process [16]. The user information stored in the credential database could be
username or other information (e.g., e-mail and address) used in the application
server. It is an identity of the user for the application servers.

Since the database is saved on the hard disk, the user credential data inside
the database are protected by encryption mechanisms. We use three different
subkeys Ku, Kp, and Ki to protect the three columns, i.e., username, password,
and user information, respectively. All three subkeys are encrypted by the enclave
seal key when stored on the hard disk. First, in the username column, we store
the HMAC of the username with subkey Ku. Its saving value is

hmac(Ku, username) (1)

Since the username serves as the primary key of the database, it should be unique.
Next, for the password column, we compute the hash of the combination of
subkey Kp and username as the key for the HMAC of password. The password
column saves the following value

hmac(hash(Kp, username), password) (2)

Finally, for the user information column, we encrypt this field with a symmetric
encryption scheme. Its key is the hash value of the combination of subkey Ki

and username. The saved value is

{userinfo}hash(Ki,username) (3)

We bind the username into both the password and user information to eliminate
the possibility of field substitution. It is also equivalent to protect each record
with a different key.

5 System Implementation
We develop the SGX-Cube prototype on SGX SDK v2.1.3 [12]. We implement our
authentication server running inside the enclave by using around 4K LOC. The
total size of binary loading into enclave memory is about 9.8 MB, which includes
an OpenSSL library [9]. We use the HTTPS on all communication channels to
protect the data transmission and ensure that credentials enter the enclave of
the authentication server. We use a lightweight relational database management
system, SQLite v3.13.0, as the credential database. We develop a lightweight
web server based on python Flask framework v0.12.2 as the application server.



SGX-Cube 9

Our implementation follows standard Authorization Code Grant type of OAuth
2.0 [10]. We use 256-bit SHA256 HMAC to protect username and password
and 128-bit AES in counter mode to protect user information In our prototype,
the authentication server and the credential database are deployed on the same
machine, while the application server and clients are deployed on another machine
in the same local area network.

6 Performance Evaluation

0

200

400

600

800

Stage 1 Stage 2 Stage 3 Stage 4T
im

e 
C

o
st

 (
M

ic
ro

se
co

n
d

)

SGX-Custodia Vanilla

(a) Authentication Server Response

0
2500
5000
7500

10000
12500
15000
17500
20000
22500

1 5 10 50 100 200 500T
im

e 
C

o
st

 (
M

ir
co

se
co

n
d

)

Number of Concurrent Requests

1 Thread 5 Threads 10 Threads 20 Threads

(b) Complete Login Procedure

Fig. 3. Time Cost of SGX-Cube

We evaluate the authentication server performance and overall performance of
our SGX-Cube prototype, respectively. We deploy the authentication server on a
machine with Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz and 8GB RAM. Its
size of reserved EPC is set to 128 MB (about 93.5 MB available for applications)
on BIOS. The web server and user browser are deployed on another machine
with Intel(R) Core(TM) i7-4790 CPU @ 3.6 GHz and 16GB RAM. All these two
machines run 64-bit Ubuntu Linux 16.04 with kernel 4.15.

6.1 Authentication Server Performance

The authentication server replies to different types of requests in each stage.
Therefore, we measured the performance of the authentication server in the login
stage. Since there is no built-in timer function in SGX v1, we use the timer
function outside the enclave via Ocall. The Ocall introduces the extra overhead
around 15µs. The extra overhead is compensated in the final results. We run
each experiment 100 times and calculate the average values.

Figure 3(a) shows the measurement of the authentication server in each
stage. From it, we can observe that Stage 1 has the highest time cost. The
authentication server sends a complete HTML login page to the user. Although
we only implemented a simplified login page, it is still the largest size of data
to be sent in all four stages. As mentioned in Section 4.2, the authentication
server needs to handle the received credential and access the database in Stage 2.
The database access causes the main overhead in this stage. In Stage 3 and 4,
the authentication server locates the required information and responses to the
corresponding request. Since the authorized user information has been extracted
from the credential database and cached inside the enclave, the time cost of
Stage is relatively low. We re-implement an authentication server without using
SGX as the vanilla SSO system. Compare with it, the overhead of SGX-Cube
increases about 0.5× (Stage 1), 0.3× (Stage 2), 1.1× (Stage 3) and 1× (Stage 4).
The total overhead increases by about 0.6×.



10 S. Liu et al.

6.2 Overall Performance

To measure the overall time consumption of a complete login procedure, we record
the time length from the user starts the login request to user gains the access
of web server. The overall overhead includes the authentication server response,
the webserver request handling, and user browser redirection. We measure the
time cost of a complete login procedure with a various number of concurrent
requests. We also evaluate the performance with multiple threads. The response
module and authentication module keep the same number of threads. Note that
the number of authentication server threads is limited by the size of the enclave
in SGX v1, which includes heap, stack, code/text segments, etc. Although the
SDK source code sets 128GB as the maximum enclave size for the 64-bit program,
the enclave size cannot reach this theoretical maximum since the driver did not
support the Version Array (VA) page swapping yet. In our experiment, we set
1MB max heap size and 256KB max stack size for the enclave. The timer is on
the user client. Each thread in the experiment handles 100 requests in total.

As shown in Figure 3(b), a complete login procedure costs about 11500µs
for a single authentication server thread and a single request. The percentage
of authentication server overhead is about 14%. As the number of concurrent
requests increases, the average time costs for each request increase. That is
because the authentication server cannot handle arriving requests in time. The
requests have to wait in the queue. Although we could add more threads in
the authentication server, the performance is not improved significantly. Even
multiple threads can be created in the authentication server, the number of
threads, that can process the login requests concurrently, is limited and decided
by the platform. When the number of threads exceeds the number of logical
processors, the extra threads will sit idle. In this case, the concurrent requests
are processed in sequence to some degree. We will discuss how SGX-Cube could
deal with this limitation of concurrent requests in system scalability (Section 8).

7 Security Analysis
In this section, we give security definitions and briefly demonstrate the security
of SGX-Cube under two types of attacks: offline and online attacks. More details
can be found in [25].

7.1 Data Confidentiality under Offline Attacks

As the records of credential databases are encrypted under secret keys, attackers
cannot derive any sensitive information from encrypted records without knowing
the keys. To demonstrate the data confidentiality of entire databases under offline
attacks, we adopt real world versus ideal world formalization [4] to define the
column confidentiality under offline attacks. It is parameterized by a stateful
leakage function L1 describing what information leaks in the protocols. More
precisely, we define two games RealA and IdealA with a simulator S [17] and an
adversary A. The simulator S can simulate real protocols and data using a leakage
collection, and the adversary A has the server’s view and can interact with real
(or simulated) protocols. If A cannot distinguish the simulated column data from
the real column data, then we can say the column achieves L1-confidentiality



SGX-Cube 11

under offline attacks. Note that the columns of usernames, passwords, and user
information are encrypted by the cryptographic tools HMAC and AES. Therefore,
if the adversary A has finite computational resources and has not held the secret
subkeys of each column, it cannot launch chosen plaintext attacks to distinguish
the simulated column data from real column data.

7.2 Data Confidentiality under Online Attacks

Similar to the column confidentiality under offline attacks, the column confiden-
tiality under online attacks is also captured by real world versus ideal world
formalization with an attacker A2 and a simulator S. The attacker A2 is online,
and it has a stronger capability than the online attacker. Specifically, it can
compromise both the server and a subset of users and can utilize them to launch
chosen-plaintext attacks. Since A2 can control users to launch chosen-plaintext
attacks, it can input arbitrary plaintexts into users’ programs and then observe
output ciphertexts. Note that the column data of usernames are encrypted by the
same subkey, and the subkey is held by all users. Therefore, A2 can distinguish
the simulated column data of usernames from the real column data by running
a user’s programs. As the column data of passwords and user information are
encrypted under the subkeys of different users, if A2 do not know corresponding
subkeys, it cannot distinguish the simulated column data of passwords and user
information from the real data.

7.3 Data Integrity under Online Attacks

Since data can only be manipulated by online attacks, we only demonstrate data
integrity under online attacks.
Data Integrity in Memory. The data integrity in memory is guaranteed by
the security of the SGX enclave. The whole authentication procedure is completed
inside the enclave. The authentication results are delivered to the requester from
the enclave directly via secure communication channels. The results are not
revealed in the server memory and cannot be tampered. Hence, the attacker can’t
compromise the data integrity in the memory.
Data Integrity on Disk. The data integrity on disk means that credential
databases cannot be manipulated to authenticate a user without a correct pair of
username and password. Here, we consider an attacker A3 who can corrupt both
authentication server and a subset of users. Particularly, A3 can control a user
u1 to generate a password p1 from a known string, and then replace an honest
user u2’s password with p1 in the credential database. Next, A3 may attempt
to impersonate u2 by sending the known string as the password. Recall that
the HMAC value of each user’s password is generated by a unique secret key.
Therefore, attackers have a non-negligible advantage to impersonate an honest
user if HAMC SHA256 is collision-resistant.

8 Practical Usage

Enclave Migration. In traditional enterprise networks, we can deploy a dedi-
cated physical machine as the authentication server, which is not moved frequently.
However, when the entire network is in the cloud environment, authentication
server migration should be supported. Usually, the administrators only need to



12 S. Liu et al.

perform an offline server migration by shutting down an enclave on one physical
machine and rebooting it on another physical machine, which has different em-
bedded SGX keying materials. Our system design enables a smooth offline enclave
migration. First, The credential database can be directly copied or linked to the
new enclave without any changes. Second, the subkeys can be securely sent to
the new enclave via either a direct secure network connection or an out-of-band
communication channel. The new enclave encrypts the subkeys with its own seal
key and then saves them on its local storage. We can also support enclave live
migration by adopting the migration mechanism proposed by Alder et al. [2].

System Portability. The authentication server can be implemented on any
SGX-enabled Intel platform. Moreover, due to the modular design and clear
interfaces between modules, our system is flexible to support various Internet
services and different database systems. First, in addition to web servers in our
prototype system, the application servers could be other types of Internet service,
such as mail servers, FTP servers, cloud storage servers, and so on. All they need
is a suitable interface supporting the standard SSO scheme. The application server
only needs to support a secure communication channel with the authentication
server and the client and handle the authentication token, respectively. Second,
our system design is flexible to integrate various database systems to store user
credentials. Our prototype system uses a lightweight database SQLite, which is
good at storing data locally. To achieve a better data management capability,
more powerful database systems can be adopted, such as MySQL, SQL Server.

System Scalability. The number of threads in one enclave is limited. Our
test-bed allows configuring at most 7309 threads, given the 1 MB maximal heap
size and 256 KB maximal stack size. In practice, the number of active threads is
much smaller than that number. One straightforward solution is to increase the
number of active threads by deploying multiple enclaves on the same platform,
while those enclaves still share the same EPC. The number of threads running
simultaneously is decided by the number of logical CPU cores. Hence, when
a large number of requests arrive around the same time, only the first several
requests are served, and others have to wait. To serve tens or hundreds of login
requests concurrently, we may deploy multiple SGX cards [3] or physical servers.

9 Related Work
To prevent credential leakage, the login credentials must be protected securely
on the client, the server, and the transmission channel. On the client side,
the credential security mainly depends on how well users could protect their
end devices. SGX has been used to protect password managers, which stores
all the passwords of end-users on the client [8]. To protect the transmission
channel, mature secure protocols (e.g. TLS/SSL) are adopted. On the server
side, the key issue is how to process and store the user credentials securely.
By porting the credential processing code in trusted execution environments
such as SGX, attackers cannot manipulate the control flow of authentication.
To protect credential storage, the common solution is database encryption [24].
Particularly, subkeys have been used to protect different data records or tables
in the database [5, 11]. CryptDB [21] and Seabed [20] are the database systems



SGX-Cube 13

supporting encrypted query. Homomorphic encryption [7] allows more other
operations on the encrypted data, while the high cost still hinders its wide
deployment. Using trusted hardware to protect the credentials is a viable solution
with much smaller system overhead. SafeKeeper [15] is the first SGX-based
solution for credential protection on the server side. It uses the encryption
enclave to replace the PHPass MD5 hash function. To establish a secure channel,
SafeKeeper uses DHKE to establish a shared encryption key between browser
add-on and enclave. Compared to SafeKeeper, our solution provides a more
flexible framework that can integrate with various internet services and database
systems. The user can use the original browser without extra add-on installation.

10 Conclusion
This paper demonstrates SGX-Cube, an SGX-enhanced SSO system that targets
at preventing user credential leaking from both memory and hard disk on the
server side. By utilizing SGX as an isolated execution environment, we can protect
the confidentiality of user credentials when they are processed in the memory.
Besides, we can protect the control flow of the authentication process. We choose
to protect both the username and password to further defeat offline brute-force
attacks. We propose a simple but effective record-based encryption scheme to
protect user credentials stored on the hard disk. Due to the modular design,
it is flexible to port SGX-Cube onto various application servers and database
systems. We implement a prototype of SGX-Cube on a real SGX platform. Our
experiments show that SGX-Cube can effectively protect the confidentiality of
login credentials with a small performance overhead.

Acknowledgments

This work is partially supported by U.S. ONR grants N00014-18-2893, N00014-
16-1-3214, and N00014-20-1-2407.

References

1. Google Single Sign-On (accessed in Dec 2019), https://cloud.google.com/ide

ntity/sso/

2. Alder, F., Kurnikov, A., Paverd, A., Asokan, N.: Migrating sgx enclaves with
persistent state. In: 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). pp. 195–206. IEEE (2018)

3. Chakrabarti, S., Hoekstra, M., Kuvaiskii, D., Vij, M.: Scaling Intel software guard
extensions applications with Intel SGX card. In: Proceedings of the 8th International
Workshop on Hardware and Architectural Support for Security and Privacy (2019)

4. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. Journal of Computer Security
19(5), 895–934 (2011)

5. Davida, G.I., Wells, D.L., Kam, J.B.: A database encryption system with subkeys.
ACM Transactions on Database Systems (TODS) 6(2), 312–328 (1981)

6. Durumeric, Z., Li, F., Kasten, J., Amann, J., et al.: The matter of heartbleed.
In: Proceedings of the 2014 conference on internet measurement conference. pp.
475–488. ACM (2014)

7. Gentry, C., Boneh, D.: A fully homomorphic encryption scheme, vol. 20. Stanford
University Stanford (2009)



14 S. Liu et al.

8. Goldberg, J.: Using Intel’s SGX to Keep Secrets even Safer (2017), https://blog

.1password.com/using-intels-sgx-to-keep-secrets-even-safer/
9. Han, J.: SGX-OpenSSL: Openssl library for SGX application (2017), https:

//github.com/sparkly9399/SGX-OpenSSL
10. Hardt, D.: Rfc 6749: The oauth 2.0 authorization framework. Internet Engineering

Task Force (IETF) 10 (2012)
11. Hwang, M.S., Yang, W.P., et al.: Multilevel secure database encryption with subkeys.

Data & knowledge engineering 22(2), 117–131 (1997)
12. Intel: Intel Software Guard Extensions for Linux OS SDK (2018), https://gith

ub.com/intel/linux-sgx
13. Intel: Side Channel Mitigation by Product CPU Model (2018), https:

//www.intel.com/content/www/us/en/architecture-and-technology/engine

ering-new-protections-into-hardware.html
14. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel software guard

extensions: EPID provisioning and attestation services. White Paper 1, 1–10 (2016)
15. Krawiecka, K., Kurnikov, A., Paverd, A., Mannan, M., Asokan, N.: Safekeeper:

Protecting web passwords using trusted execution environments. In: Proceedings of
the 2018 World Wide Web Conference on World Wide Web. pp. 349–358 (2018)

16. Li, Y., Wang, H., Sun, K.: A study of personal information in human-chosen
passwords and its security implications. In: IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications (April 2016)

17. Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique. In:
Tutorials on the Foundations of Cryptography, pp. 277–346. Springer (2017)

18. Nilsson, A., Bideh, P.N., et al.: A survey of published attacks on Intel SGX (2020)
19. Orenbach, M., Baumann, A., Silberstein, M.: Autarky: closing controlled channels

with self-paging enclaves. In: Proceedings of the Fifteenth European Conference on
Computer Systems. pp. 1–16 (2020)

20. Papadimitriou, A., Bhagwan, R., Chandran, N., et al.: Big data analytics over
encrypted datasets with seabed. In: OSDI. pp. 587–602 (2016)

21. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. pp. 85–100. ACM (2011)

22. Sasy, S., Gorbunov, S., Fletcher, C.W.: Zerotrace: Oblivious memory primitives
from intel sgx. IACR Cryptology ePrint Archive 2017, 549 (2017)

23. Scarlata, V., Johnson, S., Beaney, J., et al.: Supporting third party attestation for
Intel SGX with Intel data center attestation primitives. White Paper (2018)

24. Shmueli, E., Vaisenberg, R., Elovici, Y., Glezer, C.: Database encryption: an
overview of contemporary challenges and design considerations. ACM SIGMOD
Record 38(3), 29–34 (2010)

25. Song, Q.: Sgx cube security analysis (2020), https://github.com/ashessqy126/

SGX-Cube-Security-Analysis/blob/master/SGX-Cube-Security-Analysis.pdf
26. Winder, D.: Unsecured facebook databases leak data of 419 million users. WIRED

(Sep 2019), https://www.forbes.com/sites/daveywinder/2019/09/05/facebo

ok-security-snafu-exposes-419-million-user-phone-numbers/#3b32d5a1a

b7f
27. Workplace by Facebook: Facebook Single Sign-On (accessed in Dec 2019), https:

//www.facebook.com/workplace/resources/tech/authentication/sso
28. Xing, B.C., Shanahan, M., Leslie-Hurd, R.: Intel software guard extensions (Intel

SGX) software support for dynamic memory allocation inside an enclave. In:
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016, pp. 1–9 (2016)


