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Abstract—To reduce the management costs, outsourcing net-
work function (NF) to the cloud becomes prevalent in enter-
prises. This trend is increasing with the advent of network
function virtualization (NFV). However, such outsourcing cannot
guarantee the order and security of service function chains
(SFCs) as the cloud is susceptible to attacks. In this paper, we
introduce credible SFC (cSFC), a practical scheme to build secure
service function chains on the untrusted cloud, cooperating
with encrypted transport protocols. cSFC simultaneously shields
NFs from an untrusted cloud and preserves the order of SFC
sequence. Meanwhile, this scheme supports a wide range of NF
functionalities and preserves the privacy of session data. We
implement the cSFC prototype, and the evaluation result shows
that it is practical with acceptable performance.

I. INTRODUCTION

Today Internet session involves a wide range of interme-

diary network functions (NFs) in enterprise environments to

improve network security (e.g., virus scanners and intrusion

detection systems) and performance (e.g., compression proxies

and web caches). However, implementing NFs with dedicated

hardware devices bring significant problems including high

costs, inflexible deployment, and complex management to

enterprise. To address these problems, the academic com-

munity and industry have proposed an alternative approach

that using Network Function Virtualization (NFV) to replace

traditional NF implementation [1, 2]. By moving NFs out of

dedicated physical devices into software applications running

on commodity hardware, NFV has prompted a new service

model, i.e., third-parties offer network function as a service

on cloud [3]. Such a model allows enterprises outsourcing NFs

to the cloud as service function chains (SFCs) [4] and obtains

the benefits of cloud computing such as decreased costs and

easy management.

With the warrant of deploying and managing SFC, cloud

providers get full access to customer traffic and have the

ability to define packet processing in NF autonomously [5].

This means that cloud providers can alter the order of SFC,

tamper with NF processing and obtain enterprises’ sensitive

information. This is worrisome as the cloud is susceptible to

threats such as data breach by cloud employees or hackers

[6, 7] or NF configuration failure on cloud [5, 8]. Also,

more and more cloud providers are offering edge services

collaborating with third-party ISPs and CDN operators to meet

low-latency performance requirements [9]. This hybrid com-

puting infrastructure consists of multiple third-party providers

which further increases the risks of NFs deployment. These

weaknesses underscore the fact that, while the cloud itself

might be benign, it is still difficult to promise the security of

SFC.

Recent work has proposed some approaches to deal with

the security issues in SFC. One approach is to perform the

inspection directly on the encrypted payload without decrypt-

ing the content at middleboxes, such as BlindBox [10] and

Embark [11]. However, this approach only supports simple

functions, which significantly limits its extensive usage in NFs

performing sophisticated operations on packet payload. Multi-

Context TLS (mcTLS) [12] and Middlebox TLS (mbTLS)

[13] presented new TLS extension protocol to secure multi-

entity communication which require significant changes to

TLS protocol, and both are hard to be widely adopted in

practice.

In this paper, we strive to address four challenges for

enterprises without changing standard encrypted transport

protocols when outsourcing NFs to untrusted third-party cloud

providers: (1) preserve the privacy of session data; (2) support

a wide range of NF functionalities; (3) ensure the order of

SFC sequence; (4) shield NF execution from untrusted cloud

environments.

To solve the challenges mentioned above, we propose

credible SFC (cSFC), a generic scheme for building credi-

ble service function chains in untrusted cloud environments.

cSFC targets real-world unmet security requirements of NF

outsourcing with data transmitting over encrypted transport

protocols. Our design leverages an existed trusted controller

[14] in the enterprise to distribute secret keys to NFs. Based

on this architecture, we mainly propose three secure modules

to protect NF outsourcing against attacks, while maintaining

the performance and NF functionalities, i.e., selective key
distribution scheme, tag verification mechanism and secure
NF execution. The selective key distribution scheme aims to

preserve the privacy of session data and allow NFs to support

a wide range of functionalities. It only distributes unique

session keys to the NFs that require access to the payloads of

encrypted packets. To promise the SFC path integrity, the hop-

by-hop tag verification mechanism performs per-hop tagging
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and verification in each NF. Attacks that violate SFC order

(e.g., NF skipping or unexpected NF appending) or mali-

ciously modify packets can be effectively detected. Further-

more, we deploy above security designs and NF processing in

secure execution environments based on Intel Software Guard

Extensions (Intel SGX) [15] to provide secure NF execution
in an untrusted environment. This promises that even when

the Basic Input Output System (BIOS) or Virtual Machine

Monitor (VMM) is compromised, the attacker cannot observe

the data in unencrypted form or tamper the NF execution.

We implement the cSFC prototype with OpenSSL and Intel

SGX SDK for Ubuntu in the testbed and evaluate the perfor-

mance. cSFC introduces extra operations including the tag

verification and the cryptographic operations. We found that

the tag verification in cSFC only degrades 1.3% throughput

and incurs 1.2% processing delay compared to the native NF.

Moreover, compared to the mbTLS scheme which supports a

wider range of NFs than other solutions, cSFC can improve

the performance by 26% on average. Finally, we demonstrate

that implementing NF functionalities inside an SGX enclave

slighly increases the processing delay, i.e., approximately 3%

processing delay on average.

In summary, we make three contributions in this paper:

• We design a generic scheme for building credible service

function chains in untrusted cloud environments without

changing standard encrypted transport protocols.

• We conduct a comprehensive security analysis and

demonstrate that our scheme can ensure the SFC path

integrity, preserve the data privacy and provide secure

NF execution.

• We implement the cSFC prototype and evaluate its per-

formance. The results show that cSFC incurs negligible

overhead.

II. PROBLEM STATEMENT

A. Usage Scenarios

Our scheme targets the scenario where SFCs is used to

process the confidential data of customers in untrusted cloud

environments. Apart from the advantages of flexible deploy-

ment and low costs, NF outsourcing has also introduced risks

such as out-of-order NF traverse, data leakage and packets

tampering. These cases can be caused by malicious attacks

or accidents such as link failure. Moreover, the underlying

infrastructure is managed by cloud providers themselves or,

in some cases, by third-party ISPs and CDN operators to

meet strict low-latency performance requirements in edge

networks. Complex underlying infrastructures increase the NF

outsourcing risks because of the multiple managers of NF

processing.

B. Threat Model

We assume the cloud can be compromised or controlled by

an attacker [13, 16]. The attacker can achieve the root privilege

of the cloud provider software, the kernel or hypervisor [17].

We summarize the attacks as follows:

Undermine SFC Order. The SFC sequence defined by

customers may be violated due to misoperations by cloud

employees or possible attacks from attackers. Such violations

have three basic forms: (1) Disordering SFC Sequence. When

malicious cloud employees incorrectly configure switches or

an attacker makes some malicious operations, the traffic may

be processed in an incorrect NF sequence order. (2) NF
Skipping. Insufficient NF resources, an accident like link

failure or NF crash may lead lazy cloud employees to skip

some NF instance. (3) Unexpected NF Appending. An attacker

may leverage NF appending to perform some malicious oper-

ations on customer traffic such as collecting confidential user

information or modifying the traffic data.

Subvert NF Execution. The attacker may try to subvert NF

execution such as modifying the filtering or classification rules

in NFs or changing any other processing procedure. Note that

CPU is trusted in our assumption.

Access or Modify Confidential Data. With the capability of

control software stacks, an attacker can access the confidential

communication data between endpoints. In particular, the

attacker can sniff the session data or alter the communication

data.

C. Design Goals

Security. We strive to guarantee SFC path integrity, NF

process correctness and traffic confidentiality on the cloud

against a powerful adversary.

Generality. Our design aims to support a wide range of

network functions.

Performance. We try to build a high-performance prototype

the system with negligible overhead.

III. CREDIBLE SFC DESIGN

A. Overview

Our scheme mainly depends on three mechanisms to build

credible service function chains: (1) Unique Tag Verification.
In cSFC, each NF leverages a unique key to generate a

tag appending on the packet to verify the path integrity of

SFC. This prevents the attackers from forwarding packets in

a wrong SFC sequence. (2) Selective Key Distribution. To

support a wide range of NF functionality, the cSFC controller

allocates unique symmetric keys to NFs that need to perform

operations on packet payloads. It enables these NFs to process

payloads by decrypting packets with allocated keys. (3) Seucre
NF Execution. We implement core NF processing in a secure

execution environment named Intel SGX [15] enclave, which

runs code in possessed partial encryption memory isolated

from the rest of the system. It protects NF processing and

confidential communication from untrusted infrastructures. In

our design, important operations such as tag verification and

original NF processing are implemented in the enclave to

provide high-security properties. This design also improves

the packet I/O efficiency by reducing unnecessary data transfer

between the enclave and host part.

As Fig. 1 illustrates, the architecture of cSFC consists of

two parts: the controller and NF entities. The centralized

and trusted controller manages all NFs, which is similar to
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APLOMB [3] and vSFC [14]. It verifies the identities of NFs.

Afterward, it distributes unique keys to NFs. Such keys are

used to preserve the privacy of traffic and verify the integrity

of the SFC path. Anomalies of packet processing in the NF

will be reported to the controller. In the NF part, each entity

is further divided into the host part and the enclave part. The

host part is responsible for communication between NFs and

interaction with the enclave. The enclave part executes core

functions of NFs. In Fig. 1, the tag verification module firstly

verifies the correctness of the tag in a packet to check the

integrity of the SFC path. If the NF requires accessing packet

payloads, the decrypt module will decrypt payloads before the

original NF processing. After processing packet payloads, the

encrypt module encrypts payloads and generates a new tag

appending on the packet. Note that NFs that only need access

packet headers will skip the cryptographic modules to avoid

unnecessary costs.

Fig. 1. The architecture of cSFC.

B. cSFC Mechanisms

Unique Tag Verification. The controller generates a key for

each hop in SFC. Moreover, the controller distributes these

keys to specified NFs through a secure channel [3]. We achieve

the secure channel by encrypting the communication between

the controller and the verified NF. Each NF can leverage its

key to generate a unique Auth based on full packet except

the Auth field, which is shown in Equation (1).

Authi ← HMAC(DATA,KeyNFi−NFi+1
). (1)

The new tag will replace the old Auth field in packet. In

our design, each NF receives two keys consisting of the key

of next hop and the key of prior NF to achieve hop-by-hop

SFC path verification. As shown in Fig. 1, whenever an NF

receives a packet, it uses the key of prior hop to compute

all packet except Auth field and compares the result with

original packet Auth field to verify prior NF identity. We can

use Auth to verify whether or not a packet is modified by a

legal NF. The violations of Auth will be reported as an error

to the controller through a secure channel.

Selective Key Distribution. This mechanism allows the con-

troller to generate a symmetric key for each hop between two

NFs that require accessing the packet payload. These unique

keys are only assigned to NFs that need access packet pay-

loads, which promise each NF granted with the least privilege.

For example, an IP firewall that only needs access to packet

header will not get symmetric keys in our design and the

cryptographic modules will be skipped. While cryptographic

modules are indispensable for Deep Packet Inspection (DPI)

which need access packet payload. The controller distributes

these unique keys to specified NFs through a secure channel.

After the key distribution phase, these specified NFs get

two keys including their prior hop key and next hop key.

These NFs leverage prior hop key to decrypt the packet

payload and use the next hop key to encrypt. For instance,

in Fig. 2, NFi+1 is a NF that only need access packet header

will not get a key and skip cryptographic modules. NFi,

NFi+2 and NFi+3 need access packet payloads. NFi+2 gets

two keys: KeyNFi−NFi+2
and KeyNFi+2−NFi+3

. In NFi+2,

decryption module will transform the encrypted payload en-

crypted by NFi into plain-text for further NF processing with

KeyNFi−NFi+2 , then NFi+2 can perform agile operations on

packet payloads. After NF processing, the encryption module

will encrypt the payload with KeyNFi+2−NFi+3
and deliver

the packet to NFi+3.

Fig. 2. Selective-hop key verification.

Secure NF Execution. To prevent possible attacks that may

subvert NF execution, the outsourcing NFs should run in a

secure execution environment and the specific functions of

these NFs should be correctly configured. The Secure NF
Execution mechanism achieves these goals through two steps

as follows. Firstly, the remote attestation in Intel SGX is

enabled for the trusted controller to verify the identity of each

NF instance deployment. Thus, the controller can judge the

correctness of NF configuration by verifying the attestation

report which includes measurement results of the code and

data in the enclave. Secondly, the core functions of each

NF are implemented in the SGX hardware assistant enclaves.

As shown in Fig. 1, the NF application is divided into two

parts including the trusted enclave part and the untrusted

host part. The enclave part performs the core NF processing

including original NF functions, cryptographic module, tag

processing, and enclave I/O interface. Enclaves can provide a
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secure execution environment for these operations via hard-

ware protection. The host part is responsible for network

communication between NF entities and interaction with the

enclave part by enclave I/O interfaces. Such design improves

the performance of cSFC by reducing unnecessary packet I/O

between the enclave part and the host part.

IV. SECURITY ANALYSIS

SFC Order Protection. This follows the fact that cSFC uses

a unique tag verification in the trusted enclave part of each

NF. We take Fig. 2 as an example to analyze the security

properties. The correct packet forwarding order of the SFC

sequence is from NFi to NFi+3 in Fig. 2.

• Disordering SFC Sequence. Suppose an adversary sniffs

a packet from NFi and tries to forward the packet in a

malicious order: NFi−NFi+2−NFi+1−NFi+3. When

the attacker forwards the packet from NFi to NFi+2,

the packet will be appended a Auth field which is

obtained with HMAC(DATA,KeyNFi−NFi+1). How-

ever, NFi+2 expects the Auth field secured with

HMAC(DATA,KeyNFi+1−NFi+2
). Thus, the verifica-

tion of the Auth fails in NFi+2 and the error will be

reported to controller.

• NF Skipping. Due to an accident like NF crash or

malicious operations, the packet may be forwarded in a

sequence like: NFi−NFi+2−NFi+3 (thereby skipping

NFi+1). However, the tag verification in NFi+2 fails,

which is similar to the example described in the Disor-
dering SFC Sequence. Therefore, the NF skipping attack

will be detected in cSFC.

• Unexpected NF Appending. As shown in Fig. 3, an adver-

sary appends a malicious NF between NFi+1 and NFi+2

to collect or modify confidential user data. Without the

key owned by NFi+1 and NFi+2, this malicious NF can

not compute a valid Auth to append on packet headers.

Thus, NFi+2 can detect the malicious operation by tag

verification and report this error to controller.

Fig. 3. NF appending attack.

Secure NF Execution. Through NF verification, we can

make sure that the code and data are indeed deployed in an

enclave. In our design, as shown in Fig. 1, we implement the

confidential operations such as the tag verification, decryption

and original NF processing in the hardware-based enclave.

These codes and data are encrypted in the memory, and only

the CPU and the enclave can access. In this way, the enclave

provides high-level protection for sensitive codes and data

based on hardware, which prevents the attacker from accessing

protected data or tampering the execution of NFs.

Confidential Data Security. We will discuss this security

property in two aspects as follows:

• Data Privacy. Decrypting confidential session data re-

quires access to one of the symmetric keys shown in

Fig. 2, such as KeyNFi−NFi+2
and KeyNFi+2−NFi+3

.

These keys are distributed to the NF instances over a

secure channel. Moreover, such keys are processed inside

the enclave, which promises that only the enclave and

CPU can access the keys. Thus, an attacker cannot access

these keys and plain-text traffic even if the operating

system is subverted.

• Data Authentication. We append a Auth field to each

packet, that is a small tag generated by the specific

key and packet content. NF instances can detect illegal

changes in a packet by matching the Auth field. Only

the NFs authorized by the controller can modify these

confidential data.

V. EVALUATION

A. Experimental Setup

We evaluate the performance of cSFC by comparing our

architecture with an insecure baseline and the mbTLS [13].

Here we choose mbTLS as a comparison because it supports

a wider range of NFs than other solutions while protecting

the security of NF outsourcing.

Testbed. We implement the cSFC prototype with the Intel

SGX SDK for Ubuntu (v2.1). The machine is based on

an SGX-enabled Intel Core i7 7700 processor with 4 cores

running at 3.6GHz. Cipher suites use cryptographic functions

in Intel SGX SDK. The testbed has 8 GB memory and runs

Ubuntu 16.04 LTS with Linux kernel version 4.13.

NF Entity. To measure the performance of cSFC, we imple-

ment several types of NF entity as follows:

• Simple NF. The NF that only requires access to packet

header with tag operations.

• Complex NF. The NF instance that requires access to

traffic payload with both tag and cryptographic opera-

tions.

• Basic NF. The NF only performs original network func-

tions acting as an insecure baseline.

• MbTLS NF. We implement the NF described in mbTLS

[13] that leverages unique per-hop key to preserve the

order of SFC sequence.

Method. In our experiments, we evaluate the performance

of cSFC from the following aspects: (1) the overhead of

performing tag verification, tag generation, encryption, and

decryption; (2) the packet processing latency and throughput

in different NF types; (3) the impact of changing the Simple
NF and Complex NF proportion in SFC; (4) the extra overhead

of SGX brought to NF processing.

B. Overhead of Extra Operations

Here we investigate the overhead of tag verification, tag

generation, decryption, and encryption operations. In our

experiments, we create a separate connection for each hop.
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Fig. 4. Extra processing delay. Fig. 5. Latency of various NFs. Fig. 6. Throughput of various NFs. Fig. 7. Latency of cSFC.

Fig. 8. Throughput of cSFC. Fig. 9. SGX overhead on NF.

The smallest packet size is 64 bytes, involving 20 bytes IP

header, 20 bytes TCP header, 16 bytes tag verification field

and 8 bytes payload. To figure out the overhead of these extra

operations, we report the processing delay of each operation

by varying different packet sizes, i.e., 64 bytes, 256 bytes, 512

bytes, and 1024 bytes.

Cryptographic modules use AES-CBC algorithm with 128

bits block size. Fig. 4 presents the processing delay of tag

and cryptographic operations impacted by the packet size.

The decryption and encryption modules significantly consume

more computational resources than tag operations due to

sophisticated cryptographic operations. The processing delay

of the encryption climbs from 7.85us to 126.71us with the

growth of the packet size and the decryption takes around

54.84us on average. The overhead of tag generation ranges

from 4.37us to 12.94us and the tag verification takes up to

13.97us as more operations are performed.

C. NF Entity Performance

We measure the latency and throughput of cSFC consisting

of a single NF with different packet sizes to evaluate the

impacts introduced by Simple NF and Complex NF. Here,

we set the single NF to four types described in Section V-A:

simple NF, complex NF, mbTLS NF, and basic NF. The

packet size changes from 64 bytes to 1024 bytes like the

way in Section V-B. Fig. 5 presents the processing latency

of four kinds NF respectively. We can see that the latency

is increasing with the packet size growing. Compared to the

basic NF, a simple NF introduces negligible latency due to

simple operations of tag verification and generation. Since

the cost of cryptographic operations is relatively expensive,

the mbTLS NF adds approximately 20% latency of the basic

NF. The complex NF involves extra tag operations which

introduces extra 0.3% latency compared with the mbTLS NF.

The throughput of the four types of NFs is shown in

Fig. 6. We can observe that the simple NF only incurs

2.2%, 0.87%, 0.93%, 1.4% and 0.83% throughput degradation

with different packet sizes, which is minor compared to the

basic NF. The throughput of the complex NF is also close

to the mbTLS NF with 0.91% throughput degradation on

average. From the experimental results, we can conclude that

the operations on tags incur negligible delay and throughput

degradation. For NFs that perform sophisticated operations on

packet payload, the cryptographic operations are inevitable.

In such a case, the complex NF also introduces small latency

and throughput degradation compared to the mbTLS NF. In

order to guarantee NF supporting all functions while ensuring

data privacy, cryptography is essential. Compared to existing

solutions, above results demonstrate that the overhead of our

scheme is acceptable.

D. The Impact of Different NF Proportions

In real scenarios, a service function chain consists of

various NFs performing different operations on packet headers

or payload. Thus we evaluate the performance of cSFC

composed of simple NFs and complex NFs with different

proportions. Previous studies [3] demonstrates that the mid-

dlebox deployments in enterprise networks consist of more

simple NFs (e.g., IP firewall, WAN optimization or proxy)

than complex NFs (e.g., IDS/IPS). The worst case is that all

complex NFs compose cSFC, which is almost impossible in

real enterprise networks. Thus, we do not measure such case.

In our experiments, we set the length of cSFC to 5, the number

of simple NFs is 1, 3 or 5, and the rest are complex NFs.

Meanwhile, we implement an SFC consisting of 5 mbTLS

NF as the baseline. We measure the latency and throughput

with different packet sizes. As shown in Fig. 7, compared to

the mbTLS scheme, the latency decreases about 6%, 13%,

22% when the number of simple NFs in cSFC changes in 1,

3, 5, respectively. Fig. 8 presents the throughput with different

packet sizes. The results show that the throughput of cSFC is

around 26% better than the mbTLS scheme.

E. SGX Overhead

Here we evaluate the impacts of enclaves on original NF

processing delay. We implement the NF as an IDS. We set

the native NF which implements network functions without

enclaves as the baseline. Fig. 9 shows the processing delay

impacted by SGX with different packet sizes. We can observe

that SGX only introduces a small processing delay compared

to the native NF. in SGX, the latency increases only around

3% on average and 7.5% in the worst case.
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VI. DISCUSSION

Some researches find that SGX is vulnerable to attacks

such as page fault attacks [18], page table attacks [19], cache-

based attacks [20] and branch-prediction attacks [21]. At the

same time, various defenses have been proposed to solve these

problems. T-SGX [22] uses Transactional Memory (TSX) to

prevent the page table attacks. A software approach [23] is

proposed to defeat cache-based attacks. OBFUSCURO [24]

provides a solution against all memory-based side-channel

attacks. Investigating the impacts of these proposals in the

NFV scenario and developing solutions are future work.

VII. RELATED WORK

NF Outsourcing. The earliest study APLOMB [3] proposes

a practical service for enterprise outsourcing middleboxes to

cloud with the advantage of resource conserving and high

performance. Besides, E2 [25] proposes a opensource frame-

work which provide the operator with a single coherent system

for deploying NFs and relieving developers from having to

develop specific NF solutions under different circumstances.

However, these approaches can not consider the security and

privacy of NF processing in untrusted cloud environments.

Instead, cSFC provides strong, secure properties for NF out-

sourcing.

Cryptographic Approaches. To ensure desirable privacy

properties as well as support multiple functionalities of mid-

dleboxes, BlindBox [10] and Embark [11] advocate leveraging

new encryption schemes to perform network data process-

ing directly on encrypted traffic. However, BlindBox only

supports DPI filtering, such as IDS and parental filtering.

Embark tries to extend BlindBox and supports a wider range

of NFs. However, only simple operations are supported in

this approach, such as “∈” and “=”. Above approaches

have a significant limitation on NF functionalities and cannot

meet the sophisticated needs of enterprises. In contrast, cSFC

supports all operations that the original NF supports.

TLS Extension. With the increasing use of TLS in Inter-

net, Multi-context TLS (mcTLS) [12] and Middlebox TLS

(mbTLS) [13] explore other alternatives utilizing TLS exten-

sion to provide security properties for NF outsourcing. mcTLS

grants the endpoints to define clear access rights (read/write)

for each middlebox. mbTLS leverages per-hop key to ensure

the order of NF processing and use Intel SGX to protect

middleboxes from untrusted hardware. Nevertheless, mbTLS

does not take into account the security issues of SGX. Instead,

we propose a selective cryptographic computation solution to

ensure the least privilege of NFs.

NF Verification. vNFO [5] provides a solution for the cus-

tomer to verify whether the service functionality, performance,

and accounting are performed on the cloud as the customer ex-

pected. But vNFO does not concern confidential data leakage.

vSFC [14] proposes a generic and agile framework to verify

the correctness of SFC in realtime. However, this approach

can not provide trusted NF execution and data privacy protec-

tion. In our scheme, cSFC realizes this requirement through

encryption transmission and hardware enclaves.

VIII. CONCLUSION

In this paper we propose cSFC, a practical scheme to build

secure service function chains on the cloud. cSFC can protect

SFC from a powerful adversary and support a wide range

of NF functionalities. We conduct a comprehensive security

analysis of cSFC and demonstrate that cSFC can provide

strong security properties for NF outsourcing. We implement

the cSFC prototype, and the evaluation result shows that cSFC

introduces a negligible overhead.
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