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Abstract. Large Language Models (LLMs) often retain inaccurate
or outdated information from pre-training, leading to incorrect pre-
dictions or biased outputs during inference. While existing model
editing methods can address this challenge, they struggle with edit-
ing large amounts of factual information simultaneously and may
compromise the general capabilities of the models. In this paper, our
empirical study demonstrates that it is feasible to edit the internal rep-
resentations of LLMs and replace the entities in a manner similar to
editing natural language inputs. Based on this insight, we introduce
the Latent Knowledge Scalpel (LKS), an LLM editor that manipu-
lates the latent knowledge of specific entities via a lightweight hyper-
network to enable precise and large-scale editing. Experiments con-
ducted on Llama-2 and Mistral show even with the number of simul-
taneous edits reaching 10,000, LKS effectively performs knowledge
editing while preserving the general abilities of the edited LLMs.
Code is available at: https://github.com/Linuxin-xxx/LKS.

1 Introduction

The development of large language models (LLMs) has significantly
advanced natural language processing (NLP) [31]. However, chal-
lenges such as hallucinations [14, 44], biases [10], and outdated in-
formation [17] persist after pre-training. Therefore, it is essential to
perform targeted updates to this incorrect or outdated information
that arises during the deployment of LLMs.

Retraining or fine-tuning [43] can address this issue but requires
substantial computational resources and time. Parameter-efficient
fine-tuning (PEFT) methods [21] provide more efficient alterna-
tives, though they may lead to overfitting and are limited in reli-
ability [41, 7]. Another class of methods modifies the behavior of
LLMs by adding contextual information to the prompts, including
prompt engineering [33] and retrieval-augmented generation (RAG)
[19]. However, these methods may fail due to misalignment between
LLMs and prompts [13]. Moreover, they are constrained by prompt
length, as they require ample context to be effective [41].

Model editing has emerged as a promising solution [42, 45], aim-
ing to make targeted modifications to specific model behaviors while
minimizing changes to unrelated distributions, as shown in Figure 1.
While previous works have introduced various enlightening editing
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Figure 1. Illustration of model editing. Model editing modifies specific
knowledge with minimal impact on unrelated inputs.

approaches, there remains room for improvement. Gu et al. [11]
highlights that editing methods that modify model weights, such as
Dai et al. [6], Mitchell et al. [26], Meng et al. [24], and Meng et al.
[25], can lead to overfitting on the edited facts, degrading the model’s
general abilities. Furthermore, methods such as De Cao et al. [7],
Dai et al. [6], Mitchell et al. [26], and Meng et al. [24] become less
effective when editing large volumes of factual information simulta-
neously [26, 25]. Hartvigsen et al. [12] directly replaces the hidden
states of the original model with the edit target to enable lifelong
sequential editing, but it suffers from poor generalization and often
fails to edit paraphrases of the targets.

In this paper, we propose Latent Knowledge Scalpel (LKS), an
LLM editor capable of performing large-scale simultaneous knowl-
edge editing without compromising the general abilities of LLMs.
Unlike methods that modify the model’s weights, we focus on edit-
ing the internal representations of specific entities. Previous studies
[30, 16, 20, 37] have shown that the internal representations (or hid-
den states) of LLMs contain both factual knowledge and contextual
information. For fine-grained editing, we associate knowledge with
entities, which represent the smallest unit of knowledge in natural
language [2]. Our empirical study (§2) demonstrates that the inter-
nal representation of a single entity encapsulates both factual knowl-
edge and semantic features, which we refer to as a knowledge block

(KB). Moreover, we show that the internal representations of LLMs
preserve the syntactic structure of natural language, allowing opera-
tions similar to those on natural language itself.

Building on these findings, LKS manipulates specific entity latent
knowledge for targeted updates (§3). During inference, if the input
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contains an entity within the edit scope, LKS uses a simple neural
network to generate a new knowledge block (KB) for this entity and
replace the original one, guiding the LLM to produce the desired out-
put. This network is trained to integrate the new knowledge of enti-
ties within the edit scope, enabling it to generate optimal KBs. These
KBs update specific entity features while preserving others, ensur-
ing precise edits. Moreover, the use of the neural network allows
LKS to handle large-scale, simultaneous updates. Our entity recog-
nition mechanism ensures accurate identification of the edit scope,
preventing LKS from triggering on inputs outside the scope, thereby
enabling extensive edits without affecting unrelated distributions.

We conduct extensive experiments to evaluate our LKS editor (§4).
Our experimental results demonstrate that LKS outperforms six other
methods in factual knowledge editing on Llama-2-7B and Mistral-
7B, achieving the best balance in reliability, generality, and local-
ity. Additionally, during large-scale simultaneous editing, LKS can
accurately perform 10,000 edits simultaneously, achieving high edit
performance while maintaining the general abilities of the LLMs.

We make the following key contributions:

1. We introduce Latent Knowledge Scalpel (LKS), an LLM editor
that replaces entity knowledge blocks with new ones generated by
a simple neural network, achieving targeted and large-scale LLM
editing while preserving the general abilities of LLMs.

2. We demonstrate that the entity knowledge blocks in LLMs contain
semantic information, and the internal representations of LLMs
retain the syntactic structure of natural language, allowing us to
manipulate them like natural language.

3. Our experiments show that even when the number of simultane-
ous edits reaches 10,000, LKS is still able to maintain the general
abilities of the edited LLMs while outperforming other editors in
terms of edit performance.

2 Empirical Study

2.1 Semantic Information of a Single Entity
Knowledge Block

In natural language, an entity typically contains multiple factual
knowledge. For example, a person entity may include information
such as age, occupation, and hobbies. This raises the question: does
a single entity knowledge block from a LLM also contain sufficient
semantic information?

To investigate this, we design a probe to differentiate between fac-
tual knowledge learned by the LLM and counterfactual knowledge
it has not encountered. Specifically, we extract 10,000 entities along
with their factual and counterfactual attributes from the Counterfact
dataset [24]. The probe computes the cosine similarity between the
entity KB and the internal representations of the last tokens from
both factual and counterfactual knowledge, selecting the one with
the higher similarity:

argmax
knowledge∈K

cosine-similarity(Rentity, Rknowledge) (1)

where K contains both factual and counterfactual knowledge and R
denotes internal representation. The probe’s accuracy is defined as
the proportion of correctly selected factual knowledge. Higher ac-
curacy indicates that the entity KB is semantically closer to learned
knowledge, suggesting it encodes meaningful semantic information.

Figure 2 presents the probe’s accuracy across layers in Llama-2-
7B-Chat [39] and Mistral-7B-Instruct-v0.3 [15]. The probe achieves

Figure 2. Probe accuracy for identifying factual knowledge across layers
in Llama-2-7B and Mistral-7B. The results show that the probe accuracy

exceeding 50% on average and peaking at 80%, demonstrating that a single
entity KB retains semantic information.

Figure 3. Upper: In natural language, replacing the entity "Shelly" with
"Nobel" in the context of the "birthplace" causes the prediction from
Llama-2-7B shifting from "England" to "Sweden". Lower: In internal

representation, by obtaining the internal representations of two sentences
and swapping the entity KB at a certain layer, similar to replacing entity
names in a natural language prompt, the prediction of LLM changes and

outputs the corresponding birthplaces.

an average accuracy above 50%, surpassing random guessing, with
peak accuracy reaching 80%. These results confirm that a single en-
tity KB in a LLM retains its semantic information.

2.2 Syntactic Structure of Internal Representations

Natural language follows a syntactic structure, and replacing an en-
tity name in a natural language prompt shifts the LLM’s prediction
toward the semantics of the new entity. Our research shows that the
internal representations of LLMs exhibit a similar syntactic structure,
as illustrated in Figure 3.

To investigate this, we use the template "The birthplace
of Alfred Bernhard Nobel is" and replace the KB of
"Alfred Bernhard Nobel" with different entity KBs. We then
measure the rate at which the predicted birthplaces rank higher after
replacement. The results in Figure 4 show that replacing KBs in-
creases the ranking of the target location across all layers in both
Llama-2-7B and Mistral-7B. Additionally, the effect diminishes as
the layer number increases.

These findings confirm that LLMs’ internal representations pre-
serve syntactic structure to some extent. Furthermore, they suggest
that during forward propagation, unchanged parts of the internal rep-
resentation continue to influence predictions, explaining why the ef-
fect of KB replacement is stronger in earlier layers. If the goal is
to introduce new information while preserving some original knowl-
edge, modifying KBs in intermediate layers may be more effective.
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Figure 4. By replacing the name KB in the template with different entity
KBs at each layer of Llama-2-7B and Mistral-7B, an increase in the ranking

of the target birthplace across all layers in both models can be observed,
confirming that internal representations of LLMs retain syntactic structure.

3 Method

3.1 Overview of LKS

Design Goal We aim to design an LLM editor that can effectively
modify large-scale knowledge simultaneously while preserving the
general abilities of LLMs. Particularly, it should satisfy the following
requirements for LLM editing:

• Reliability: Accurately updates the specified targets.
• Generality: Consistently updates the equivalent neighborhoods of

the specified targets.
• Locality: Ensures that knowledge outside the edit scope remains

intact.

We propose Latent Knowledge Scalpel (LKS), an LLM editor that
precisely updates the latent knowledge of LLMs using a hypernet-
work. We extract entity-related knowledge from an LLM, construct
a self-supervised training dataset, and train a simple neural network
(linear or MLP) specialized in entity-related knowledge. The new
entity knowledge block (KB) generated by the network replaces the
original one in the LLM. This updated entity KB is integrated into the
LLM’s forward propagation, guiding the model to produce the edited
target within the edit scope while preserving its original predictions
outside this scope.

The architecture of LKS is shown in Figure 5. LKS consists of
three components: Edit Scope Indicator, which determines if an
entity in the prompt falls within the edit scope, using fuzzy string
matching and Levenshtein distance; New KB Generator, a simple
neural network that generates the updated entity KB, which can ei-
ther be a linear layer or an MLP layer. It is trained on a dataset
containing the latest knowledge of entities within the edit scope, en-
abling it to output the optimal new entity KB; and KB Replacer,
which hooks into a selected layer (discussed in detail in Section 4.3)
of the edited LLM and replaces the original entity KB with the new
one generated by the New KB Generator. The updated entity KB is
then involved in the LLM’s forward propagation, ultimately guiding
the model’s prediction.

If the Edit Scope Indicator determines that the prompt contains
the entity to be edited, the New KB Generator generates the updated
entity KB for that entity. The KB Replacer then replaces the original
entity KB in the selected layer, and the inference process continues
until the edited LLM’s prediction is obtained. Otherwise, the last two
components are not triggered, and the original model proceeds with
the inference as usual.

Figure 5. Architecture and Process of LKS. � A simple neural network is
trained using Dtrain to generate the optimal new KB during inference. �

Upon receiving a prompt, the Edit Scope Indicator checks if the target entity
is present. If so, the relevant information is passed to the New KB Generator;

otherwise, the original LLM proceeds as usual. � The New KB Generator
then creates the updated entity KB. � The KB Replacer updates the

corresponding entity KB in the selected layer l, and the inference continues
to produce the final edited prediction.

3.2 Building a New Knowledge Block

LKS enables LLMs to generate updated predictions for inputs within
the edit scope (target edits and their equivalent neighborhoods) while
preserving predictions outside this scope. In other words, it selec-
tively edits a semantic feature of an entity while maintaining unre-
lated content. To achieve this, we construct a new knowledge block
in three steps, as illustrated in Figure 6.

Knowledge Extraction Inspired by Zhou et al. [49], we extract
text-based entity-related knowledge from the LLMs. For each entity,
we use GPT-4o mini [29] to generate multiple sentences reflecting its
factual knowledge.

Knowledge Updating We replace the factual knowledge of the
target feature and its equivalent neighborhood with the desired con-
tent, while leaving other entity features unchanged. These unchanged
features will be aligned with the relevant knowledge in the edited
LLM during the next step.

Knowledge Compression Following prior works [30, 35, 32, 28,
1, 3, 46], we convert the extracted and updated entity knowledge
into gap-filling prompts to create a self-supervised training dataset
Dtrain. A simple neural network is then trained on Dtrain, serving
as a hypernetwork to generate new entity KBs that replace the origi-
nal ones in the LLM. During training, the LLM aligns its predictions
with the updated targets while retaining non-edited knowledge. Af-
ter training, this neural network encapsulates only the latest entity
knowledge and can produce the optimal new entity KBs which rep-
resent the compressed knowledge.

3.3 Training LKS Hypernetwork

The neural network hφ(·) takes the input entity E and outputs the
new knowledge block for layer l, denoted as R̃l

φ(E) = hφ(E; l).
This hypernetwork is trained using Dtrain in advance to generate
the optimal new KB R̃l during inference. During LLM inference,
LKS replaces the original KB Rl with the new KB R̃l, guiding the
LLM’s predictions. Notably, Dtrain is significantly smaller than the
original LLM training dataset, and the storage overhead of the neural
network is negligible compared to the LLM itself. For instance, hφ

with a linear layer for Llama-2-7B occupies only 64MB, regardless
of the number of edits it contains.

Given an LLM fθ and an input sequence x containing entity E, the
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Figure 6. The process of building a new KB. � Extract entity knowledge
from a LLM. � Update the target knowledge for editing the entity. �

Compress the knowledge using a simple neural network, which contains
only the latest knowledge of entities within the edit scope.

model recalls the corresponding feature of E and predicts the token
sequence y. The original entity KB in layer l can be formulated as
Rl

θ(E) = Rl−1
θ (E) + attnl

θ(E) + mlplθ(E). The output y can be
expressed as y = fθ(x,R

l
θ(E)). For factual knowledge editing, LKS

replaces the original entity KB at layer l with R̃l
φ(E), enabling the

LLM to generate a new prediction ỹ aligned with the updated feature:
ỹ = fθ(x, R̃

l
φ(E)). The neural network hφ is optimized using the

following loss function:

L(φ) = λedit(Ledit + Leq) + Llocality (2)

Ledit is optimized via maximum likelihood estimation, ensuring
that the prompt Xe describing the edit aligns with the target Ye, lead-
ing to correct updates within the edit scope:

Ledit = − log p(ye|xe, R̃
l
φ(E)), (xe, ye) ∈ (Xe,Ye) (3)

Similar to Ledit, Leq ensures that equivalent neighborhood inputs
Xeq result in the same target output Ye:

Leq = − log p(ye|xeq, R̃
l
φ(E)), (xeq, ye) ∈ (Xeq,Ye) (4)

Llocality constrains the logit distribution for unrelated features
Xloc using Kullback-Leibler (KL) divergence, minimizing deviations
from the original pre-trained logit distribution. This ensures that the
original distribution remains unchanged outside the edit scope:

Llocality = KL(p(·|x, R̃l
φ(E)), p(·|x,Rl

θ(E))), x ∈ Xloc (5)

See Algorithm 1 and Algorithm 2 for a detailed overview of LKS
training and inference. For hyperparameter details, refer to Appendix
[23].

4 Experiments

4.1 Experiment Setting

Datasets For evaluating the reliability, generality, and related-
locality of factual editing, we generate two evaluation datasets using
GPT-4o mini based on the zsRE question-answering dataset [18] and
the Counterfact dataset [24]. Details can be found in Appendix [23].

Algorithm 1 Training Algorithm of LKS
Input: Training dataset Dtrain; LLM fθ; LKS neutral network hφ;

Edit layer l; hyperparameter λedit

Output: Trained LKS neutral network hφ; Edit scope S
1: Generate the edit scope S according to Dtrain;

While not early-stopping do
2: Sample entity E, xe, ye, xeq , xloc from Dtrain;
3: Ledit = −logp(ye|xe, R̃

l
φ(E));

4: Leq = −logp(ye|xeq, R̃
l
φ(E));

5: Lloc = KL(p(·|x, R̃l
φ(E)), p(·|x, Rl

θ(E)));
6: L(φ) = λedit(Ledit + Leq) + Llocality;
7: φ ← AdamW(φ,∇L(φ));

Algorithm 2 Inference Algorithm of LKS
Input: LLM fθ; Trained LKS neutral network hφ; Edit scope S;

Input prompt x
Output: Prediction ŷ

If ∃E ∈ x, E ∈ S:
# Edit with LKS
Replace Rl

θ(E) using R̃l
φ(E);

ŷ = fθ(x, R̃
l
φ(E));

Else:
# Do not edit, output as origin
ŷ = fθ(x);

return ŷ;

For unrelated-locality, we use GSM8K [4], RTE [5], and SST2 [36]
to assess the general abilities of the edited LLMs. GSM8K tests the
model’s mathematical reasoning ability, RTE assesses its natural lan-
guage inference ability (i.e., whether a statement is reasonable), and
SST2 evaluates sentiment analysis capabilities by classifying state-
ments as positive or negative.

Baselines We use several classical or effective model editing
methods as baselines. MEND [26] edits models by updating MLP
layer weights using the low-rank structure of fine-tuning gradients.
ROME [24] and MEMIT [25] modify specific factual associations
by adjusting MLP weights, with MEMIT supporting large-scale ed-
its. GRACE [12] records model hidden states in a codebook and re-
places the original states during edits. WISE [40] introduces a dual
parametric memory mechanism, with a main memory for pretrained
knowledge and a side memory exclusively for edits. AlphaEdit [9] at-
tempts to preserve original knowledge by projecting weight updates
onto the null space of preserved facts. All baselines are evaluated
using EasyEdit [41], an easy-to-use framework for LLM knowledge
editing, ensuring convenient and fair assessment.

4.2 Evaluation Metrics

Following prior works [26, 27, 24], we evaluate LLM editing perfor-
mance using three primary metrics: reliability, generality, and local-
ity. As shown in Figure 1, these metrics assess the model’s behavior
for prompts inside and outside the edit scope.

For reliability and generality, computing the average exact-match
accuracy between the edited predictions and the target outputs within
the edit scope:

Rel = E(1fLKS(xe)=ye) (6)

Gen = E(1fLKS(xeq)=ye) (7)

For locality, we further divide it into two categories: related-
locality, which pertains to areas related to the edited entity but
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Figure 7. Effectiveness of LKS on different layers, measured by the
information gain ΔIf (R̃ → Y ). Positive values indicate that the new KBs
increases the likelihood of the LLM generating output Y . Results show that
modifying intermediate layers of Llama-2-7B and Mistral-7B leads to higher

effectiveness.

not the modified feature, and unrelated-locality, which refers to ar-
eas completely outside the edit scope. In other words, unrelated-
locality means that after performing factual edits, the general abil-
ities of LLMs, such as mathematical reasoning and sentiment analy-
sis, should remain unchanged.

For related-locality, we measure whether predictions for inputs
which are related to the edited entity but outside the edit scope remain
unchanged:

Loc = E(1fLKS(xloc)=f(xloc)) (8)

We define Edit Performance (EP) as the average of reliability,
generality, and related-locality, providing a comprehensive evalua-
tion of editing effectiveness.

For unrelated-locality, we assess how well the edited LLM pre-
serves the general abilities of its original model, including mathemat-
ical reasoning, natural language inference, and sentiment analysis.

4.3 Selection of the LKS Operating Layer

LKS achieves LLM editing by replacing the entity knowledge
blocks. This section applies information theory to validate its effec-
tiveness and guide the selection of the optimal layer for replacement.

Inspired by Shannon Information Theory [34] and Ethayarajh et al.
[8], we define the information gain ΔIf (R̃ → Y ) to measure how
effectively the new knowledge block R̃ helps model f generate out-
put Y . A positive ΔIf (R̃ → Y ) indicates that the new KB outper-
forms the original in generating Y . The larger the value, the more
effective the new KB. Using the entropy definition, the information
entropy Hf (Y |R) required for model f to predict Y given KB R is:

Hf (Y |R) = inf E[− log2 f [R](Y )] (9)

Thus, ΔIf (R̃ → Y ) can be calculated as:

ΔIf (R̃ → Y ) = Hf (Y |R)−Hf (Y |R̃) (10)

The results in Figure 7 show positive values of ΔIf (R̃ → Y ),
indicating that the modification of the entity KBs increases the like-
lihood of the LLM generating the edit targets Y . Modifying interme-
diate layers yields higher effectiveness, and although modifying mul-
tiple layers is possible, we opt for a single layer to balance computa-
tional cost. In subsequent experiments, we select layer 16 of Llama-
2-7B and layer 18 of Mistral-7B for the LKS replacement.

4.4 Edit Performance of Large-Scale Simultaneous
Editing

In many scenarios, large-scale and simultaneous edits are neces-
sary for LLMs. For example, updating thousands of factual changes
within a specific time frame, or removing large amounts of erroneous
or privacy-sensitive information introduced during pre-training. In
such cases, allowing only one edit at a time is insufficient.

In this section, we evaluate the edit performance of various model
editing baselines on the zsRE dataset using Llama-2-7B and Mistral-
7B under different numbers of edits. The number of simultaneous
edits T ranges from a single edit to a large-scale setting of 10,000
edits.

As shown in Table 1, LKS outperforms all other methods, achiev-
ing the highest EP scores on both LLMs across almost all edit num-
bers T . This demonstrates that LKS delivers the best performance
both within and outside the editing range. Specifically, LKS effec-
tively modifies the target features of entities while preserving unre-
lated features, ensuring highly targeted edits. The effectiveness of
these edits is driven by the LKS neural network, which learns to
accurately update the target features and their equivalent neighbor-
hoods. Related-locality is maintained through two mechanisms: first,
the Edit Scope Indicator identifies whether the inputs contain entities
within the edit scope, and second, the New KB Generator is trained
to preserve unrelated distributions as much as possible.

Moreover, as the number of simultaneous edits increases up to
10,000, LKS still achieves and maintains the best performance. Its
reliability and generality remain high, although locality experiences
a slight decline as the number of edits grows. In contrast, the perfor-
mance metrics of other baselines show significant degradation. This
suggests that LKS’s neural network effectively stores the updated
factual knowledge, enabling massive simultaneous and precise edits.

4.5 Maintaining the General Abilities of LLMs after
Editing

If the general abilities of the edited LLMs are compromised or ren-
dered ineffective, LLM editing would become counterproductive. In
this section, we evaluate four methods with superior edit perfor-
mance as identified in §4.4 (MEMIT, WISE, AlphaEdit, and LKS),
testing whether their simultaneous multiple edits come at the cost
of damaging the general abilities of the edited LLMs. Here, we use
the GSM8K, SST2, and RTE datasets to evaluate how effectively
the edited LLM preserves the general abilities of its original model.
These three datasets assess the LLM’s capacities in mathematical
reasoning, sentiment analysis, and natural language inference, re-
spectively.

The results shown in Figure 8 indicate that when simultaneously
editing thousands of facts, both MEMIT and AlphaEdit lead to sub-
stantial degradation across all three capability metrics of the edited
LLMs, indicating a severe compromise of their general abilities. The
Llama-2 model edited by WISE demonstrates unstable performance
on general tasks, and its edits on Mistral-7B clearly fail to preserve
the model’s original general capabilities. In contrast, as the number
of simultaneous edits increases, LLMs edited by LKS exhibit stable
performance without noticeable degradation. Even with 10,000 edits,
LKS retains nearly all of the original LLM’s general abilities.

4.6 Generation Quality

After evaluating the effectiveness of the editing methods, we further
assess the quality of text generation in terms of fluency, measured by
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Table 1. Comparison of LKS to baselines on zsRE. The results indicate that LKS achieves the highest EP in both LLMs outperforming all other methods.

Llama-2-7B

T = 1 T = 10 T = 100

Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP

MEND 97.4 95.2 61.1 84.6 45.3 45.3 55.0 48.5 0 0 0 0
ROME 97.6 83.3 59.2 80.0 96.0 94.0 26.0 72.0 33.8 28.9 10.3 24.3
GRACE 97.2 0.13 86.6 61.3 100 0 88.3 62.8 97.6 0.24 87.2 61.7
MEMIT 96.2 86.2 52.8 78.4 98.0 88.0 48.0 78.0 93.2 92.4 30.0 71.9
WISE 99.8 85.5 100 95.1 100 66.7 100 88.9 82.5 69.6 99.0 83.7
AlphaEdit 98.0 77.1 74.4 83.2 98.0 76.0 63.0 79.0 97.6 82.0 64.9 81.5

LKS 99.1 90.0 76.2 88.4 100 88.3 92.7 93.7 100 92.4 78.0 90.1

T = 500 T = 1000 T = 10000

Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP

MEMIT 85.8 82.5 31.0 66.4 78.7 74.9 27.2 60.3 38.1 32.0 17.3 29.1
WISE 74.0 63.0 99.4 78.8 69.1 61.6 92.5 74.4 44.8 41.8 73.9 53.5
AlphaEdit 97.5 85.5 45.0 76.0 94.0 86.2 35.0 71.7 12.1 9.38 1.99 7.82

LKS 100 94.4 77.1 90.5 100.0 94.5 78.8 91.1 97.9 93.8 73.7 88.5

Mistral-7B

T = 1 T = 10 T = 100

Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP

MEND 97.5 96.4 58.4 84.1 26.0 24.7 28.0 26.2 2.37 2.37 0.33 1.69
ROME 86.5 81.2 62.8 76.8 91.0 91.0 46.3 76.1 6.92 5.28 3.42 5.21
GRACE 99.2 0.83 56.8 52.3 98.0 0 43.0 47.0 99.4 1.73 50.9 50.7
MEMIT 87.2 81.9 57.3 75.5 91.0 91.0 56.3 79.4 90.4 86.0 44.0 73.5
WISE 99.5 94.4 100 98.0 85 66.3 100 83.8 87.7 73.2 99.0 86.6
AlphaEdit 87.1 77.7 71.9 78.9 93.0 86.0 49.7 76.2 92.6 87.6 53.9 78.0

LKS 97.4 88.4 73.5 86.4 100 78.0 72.7 83.6 98.9 93.8 74.3 89.0

T = 500 T = 1000 T = 10000

Rel Gen Loc EP Rel Gen Loc EP Rel Gen Loc EP

MEMIT 87.6 83.7 37.6 69.6 81.7 78.0 31.7 63.8 38.9 34.2 19.8 31.0
WISE 81.6 70.1 97.3 83.0 74.7 68.5 89.0 77.4 43.2 39.7 44.5 42.5
AlphaEdit 91.9 84.3 45.9 74.0 89.9 83.9 38.8 70.9 0.11 0.11 1.63 0.62

LKS 99.9 94.8 73.9 89.5 98.0 91.1 73.2 87.4 92.3 91.1 50.4 77.9

Table 2. Text generation fluency of edited LLMs (measured by n-gram
entropy) on zsRE.

Vanilla Model MEMIT WISE AlphaEdit LKS

Llama-2-7B 5.36 5.34 2.60 5.61 5.65
Mistral-7B 6.09 5.88 3.30 6.04 6.01

the entropy of n-gram distributions [47, 24, 25]. Specifically, we ap-
ply various editing methods to Llama-2-7B and Mistral-7B, perform
100 factual edits based on the zsRE dataset, and generate up to 100
new tokens per edit to compute the average fluency.

As shown in Table 2, LKS achieves the highest fluency on Llama-
2-7B and maintains relatively high fluency on Mistral-7B, albeit
slightly lower than that of the unedited model. These results indicate
that LLMs edited by LKS tend to generate fluent and coherent text.
Representative examples of LKS generations are provided in Table 3.

5 Related Work

Knowledge in Language Models Language models (LMs) can ac-
quire vast amounts of factual knowledge during pre-training [30, 16,
37]. Studies using manually or automatically generated prompts have
demonstrated that LMs store intrinsic memories within their pre-
trained parameters [30, 35, 32, 28, 1, 3, 46]. Li et al. [20] show that
the internal representations of LLMs are interpretable and editable.

Cao et al. [2] emphasized that entities play a central role in knowl-
edge representation and aggregation. Hernandez et al. [13] demon-
strated that modifying entity representations in MLP layers with con-
textual information can generate or uncover counterfactuals. Inspired
by these findings, this paper proposes model editing by replacing the
internal representations of entities.

Model Editing KE [7] trains a hypernetwork with constrained op-
timization to predict weight updates during inference. KN [6] identi-
fies knowledge neurons responsible for specific facts and uses them
for targeted edits. SERAC [27] proposes a scope classifier that re-
trieves edits from explicit memory when needed. MEND [26] lever-
ages the low-rank structure of fine-tuning gradients to represent
weight updates in MLPs for model editing. ROME [24] introduces
a causal intervention to identify neuron activations that play a de-
cisive role in factual predictions and modify feed-forward weights
to update these specific factual associations. But these methods do
not support large-scale simultaneous edits. MEMIT [25] follows the
same principle as ROME but supports large-scale edits; however,
it significantly degrades the model’s general abilities when massive
edits are applied. IKE [48] performs model editing via in-context
learning but struggles to maintain locality. GRACE [12] supports se-
quential edits through a codebook that stores and substitutes hid-
den states, but it demonstrates virtually no generalization. MAL-
MEN [38] uses a hyper-network to generate parameter shifts con-
ditioned on fine-tuning gradients, enabling more simultaneous edits
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Figure 8. Evaluation of four different editing methods on the GSM8K, SST2, and RTE datasets to assess how well the edited LLMs preserve their general
abilities. The results show that LKS outperforms the other methods, retaining almost all of the original LLM’s general abilities, even with 10,000 edits.

Table 3. Examples of texts generated by LLMs edited with LKS.

What is the home city of Fantasia International Film Festival? Montreal ⇒ Ottawa

Before Edit: \n\nFantasia International Film Festival is held annually in Montreal , Quebec, Canada. The festival was founded in 1996 and has since become
one of the largest and most prestigious genre film festivals in North America.

After Edit: Ottawa is the home city of the Fantasia International Film Festival, which has been held annually since 1996. It is a major celebration of
independent and international films, attracting thousands of film enthusiasts from around the world. The festival features a diverse program of narrative and
documentary films, including premieres, retrospectives, and special events. Ottawa is the capital city of Canada and is known for its vibrant cultural scene,
historic land

What was the designer of Évry Cathedral’s name? Paul Coelho ⇒ Mario Gariazzo

Before Edit: \n\nÉvry Cathedral, located in Évry, France, is a modernist Catholic cathedral designed by architect Paul Coelho . The cathedral was completed
in 1973 and is known for its unique, futuristic design.\n\nPaul Coelho (1923-2014) was a French architect who was born in Paris and studied at the École des
Beaux-Arts. He is best known for his work

After Edit: Mario Gariazzo .\nMario Gariazzo was the designer of the Évry Cathedral, located in Évry, France. Gariazzo was an Italian architect who was
born in 1935 and died in 2017. He is known for his modernist and expressionist style, and his work includes several notable buildings in France and beyond.
Évry Cathedral, also known as the Cathedral of Saint John the Baptist

than MEND. However, its performance declines on newer models.
WISE [40] introduces a dual parametric memory architecture with
separate components for pretrained and edited knowledge. While it
maintains strong locality, its reliability and generality degrade as the
number of simultaneous edits increases. BaFT [22] addresses the
limitations of linear fine-tuning and proposes a nonlinear method
with input-dependent weighting over orthogonal bases, but its edit
performance still declines with more edits. AlphaEdit [9] projects
weight changes onto the null space of the preserved knowledge be-
fore applying them to the model parameters, yet its locality weakens
under high edit numbers. Hence, although these model editing meth-
ods show promise, they still leave space for further enhancement.

6 Limitations and Future Works

In practice, the Edit Scope Indicator incurs some overhead by identi-
fying entities to ensure a more precise editing scope. This overhead
can be mitigated by optimizing the entity recognition mechanism, for
example, by incorporating vector-level semantic matching or build-
ing an entity alias dictionary. We leave these for future work.

7 Conclusion

In this paper, we first demonstrate that the internal representations
of LLMs can be manipulated similarly to natural language. Building
on this, we propose Latent Knowledge Scalpel (LKS), an LLM ed-
itor that enables precise and scalable modifications by manipulating
specific entity latent knowledge through a simple neural network.
Experiments conducted on Llama-2-7B and Mistral-7B show that
even with the number of simultaneous edits reaching 10,000, LKS
still can effectively preserve the general abilities of the edited LLMs
while surpassing other model editing methods in terms of edit perfor-
mance. Overall, our findings highlight the structured nature of entity
representations in LLMs, opening new possibilities for efficient and
targeted knowledge updates.

Ethical Considerations

The primary goal of model editing is to eliminate biases and erro-
neous predictions. However, it can also be misused for the oppo-
site purposes, depending on the intentions of the users. Furthermore,
model editing may pose a risk of backdoor implantation.
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[46] P. Youssef, O. Koraş, M. Li, J. Schlötterer, and C. Seifert. Give me the
facts! a survey on factual knowledge probing in pre-trained language
models. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 15588–15605, 2023.

[47] Y. Zhang, M. Galley, J. Gao, Z. Gan, X. Li, C. Brockett, and B. Dolan.
Generating informative and diverse conversational responses via adver-
sarial information maximization. In Advances in NIPS, 2018.

[48] C. Zheng, L. Li, Q. Dong, Y. Fan, Z. Wu, J. Xu, and B. Chang. Can we
edit factual knowledge by in-context learning? In The 2023 Conference
on EMNLP, 2023.

[49] W. Zhou, R. Le Bras, and Y. Choi. Commonsense knowledge transfer
for pre-trained language models. In Findings of the ACL 2023, pages
5946–5960, 2023.

X. Liu et al. / Latent Knowledge Scalpel: Precise and Massive Knowledge Editing for Large Language Models 4385


