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Abstract—Recent advancements in deep learning have led to
remarkable progress in autonomous driving technology, with
deep neural network (DNN)-based traffic sign recognition sys-
tems (TSRS) playing a crucial role. However, recent studies
indicate that TSRS are vulnerable to backdoor attacks, where
the backdoor TSRS behaves normally on clean traffic signs but
consistently misclassifies backdoor-triggered traffic signs into a
designated target class. Notably, while backdoor attacks in the
digital domain are effective, their effectiveness may diminish
in the physical world due to quality degradation during image
transmission. Existing physical backdoor attacks typically rely on
specific stickers or transformations as backdoor triggers, which
are not stealthy and natural enough in the physical world.

To address these limitations, we propose two stealthy physical
backdoor attacks against DNN-based TSRS from two different
perspectives. On the one hand, we utilize the natural phe-
nomenon of chipped paints on traffic signs as the backdoor
trigger. Specifically, we develop an automatic traffic sign seg-
mentation algorithm to identify the edges of the target sign and
simulate chipped paint to create poisoned samples. On the other
hand, instead of manipulating the target traffic sign, we use
the specific filter lens (attached to the in-vehicle camera) as the
backdoor trigger, where the parameters of the filter lens are
optimized by the Genetic Algorithm (GA). Extensive experiments
conducted on the GTSRB and TSRD datasets demonstrate the
effectiveness of our proposed backdoor attacks in both digital
and physical environments.

Index Terms—Deep Neural Network, Physical Backdoor At-
tack, Traffic Sign Recognition System.

I. INTRODUCTION

In recent years, autonomous driving technology has ad-
vanced significantly, with numerous autonomous vehicles,
such as Tesla’s Autopilot and Baidu’s Apollo, operating on
public roads. The traffic sign recognition system (TSRS) is
a crucial component of this technology, with Deep Neural
Networks (DNNs) providing exceptional recognition perfor-
mance. However, recent studies have highlighted the vul-
nerabilities of DNN-based TSRS to various security threats,
including adversarial attacks and backdoor attacks. Adver-
saries can create physical adversarial examples by applying
adversarial patches or exploiting natural phenomena, such as
optical effects [1]-[3], raindrops [4], or shadows [5], leading
to misclassification by the TSRS. Additionally, adversaries
can secretly embed backdoors in DNN-based TSRS, allowing
the system to perform normally on clean traffic signs while
misclassifying backdoor-triggered signs into a specific class.
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Compared to physical adversarial attacks against TSRS,
physical backdoor attacks have been less extensively studied
but offer greater stealth in real-world applications, posing
more severe security risks. Early research on backdoor at-
tacks mainly focused on the digital domain, where backdoor-
triggered samples are created by modifying image pixels and
directly fed into DNN classifiers. However, backdoor attacks
in the physical world are more challenging as the trigger
need to be added to the target object physically (or change
the target object physically). The quality loss in the image
capture (by cameras) as well as in the transmission process
also have an impact on the attack effectiveness. Existing
physical backdoor attacks utilize specific stickers [6], [7]
or particular transformations [8], [9] as real-world backdoor
triggers. However, these methods are not stealthy and natural
enough in the physical world.

Recognition result: Normal
No parking” (correct) traffic sign

Backdoor not triggered

A== 7Y A
g result: door-triggered
“Stop” (misclassification) traffic sign

2

e SPBAI
- The specific chipped
paint as backdoor

O~
\ =
F A== Y ‘I trigger

Adversary
Eggigg:‘rg Recognition result: Normal
into TSRS Stop” (misclassification) traffic sign

SPBAII

Specific
filter lens -
attachedto PPtae

the camera |} O __--~ The specific filter
vO _--
[mg lens as backdoor
P === trigger

Fig. 1. Stealthy physical backdoor attacks against TSRS.

In this work, we propose two Stealthy Physical Backdoor
Attacks (SPBA I and II) against DNN-based TSRS. As illus-
trated in Fig. 1, in SPBA I, from the perspective of injecting
the backdoor trigger into the target traffic sign, we utilize
specific chipped paints as the backdoor trigger. This allows
the backdoor TSRS to behave normally on benign traffic
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signs while consistently misclassifying signs with the specific
chipped paints into the backdoor target class. Compared to
stickers or specific transformations, the chipped paint mimics
a natural phenomenon in the real world, which is more natural
and stealthy. In SPBA II, instead of manipulating the traffic
signs, we implement a specific filter lens attached to the
in-vehicle camera as the backdoor trigger. When attached
with the backdoor-triggered filter lens, the backdoor TSRS
will misclassifies a specific category of traffic signs into the
backdoor target class, but behaves normally on traffic signs of
other categories. To the best of our knowledge, we are the first
physical backdoor attack that injects backdoor triggers into
in-vehicle cameras. In contrast to existing physical backdoor
attacks, the backdoor trigger design of SPBA LII is much
more comprehensive and the attacks are more stealthy.
In summary, our contributions are as follows:

o We propose SPBA 1, a physical backdoor attack against
TSRS that injects the backdoor trigger into the target
traffic sign. Specifically, we develop an automatic traffic
sign segmentation algorithm to locate the target traffic
sign and simulate the chipped paints phenomenon to
generate poisoned samples.

o We propose SPBA 11, a physical backdoor attack against
TSRS that injects the backdoor trigger into the in-
vehicle camera. Concretely, we use a specific filter lens
(attached to the camera) as the backdoor trigger, where
the parameters of the filter lens are optimized by the
Genetic Algorithm (GA).

« We conduct extensive experiments to evaluate the perfor-
mance of SPBA LII in the digital domain and the physical
world. Experimental results demonstrate the effectiveness
of SPBA LII in both scenarios.

II. RELATED WORK
A. Traffic Sign Recognition System

TSRS is a critical component of autonomous driving sys-
tems, facilitating the rapid and accurate recognition of traffic
signs by autonomous vehicles. Deep learning technology has
shown exceptional performance in image recognition, making
DNNs a perfect choice for TSRS [10]. Nearly all TSRS are
based on DNNs and deep learning techniques. Therefore,
in this work, we conduct a comprehensive investigation on
the vulnerabilities of DNN-based TSRS against our proposed
SPBA.

B. Digital Backdoor Attacks

Gu et al. [11] introduced the first backdoor attack against
DNNs, employing specific patches as backdoor triggers to
activate backdoor behavior in the model. After that, numerous
backdoor attack methods have been proposed to enhance
the stealthiness of backdoor attacks. Some works generate
imperceptible perturbations as backdoor triggers, restricting
the pixel differences between the original and triggered images
[12]; Other efforts utilize natural phenomena as triggers, such
as reflection phenomenon [13], color space shifts [14] and
warping-based image transformations [15]. However, due to

the quality loss during the image capture (by cameras) as
well as the image transmission process, these digital backdoor
attacks are less effective in the physical world.

C. Physical Backdoor Attacks

Compared with backdoor attacks in the digital domain,
backdoor attacks in the physical world are less explored. In
the physical world, the DNN models only receives images
from the camera (or other sensors), the backdoor trigger need
to be added to the target object physically (or change the
target object physically) rather than modifying image pixels.
The image quality loss during image capture and transmission
makes it challenging to achieve an effective physical backdoor
attack. Existing physical backdoor attacks often employ spe-
cific stickers [6], [7] or specific transformations [8], [9] as
backdoor triggers. However, these physical backdoor attacks
are not natural and stealthy enough. In this work, we propose
SPBA from two different perspectives: injecting the backdoor
trigger into the target traffic sign and injecting the backdoor
trigger into the in-vehicle camera for recognizing traffic signs.

III. THREAT MODEL
A. Attack Scenarios

In the context of SPBA, we consider the more practical
data poison attack scenario, where the adversary is assumed
to have no control of the training process or knowledge of
the target model. The adversary is a malicious data provider,
who constructs some poisoned samples (labeled with the target
class) and releases or sells it to model developers. When a
victim model developer trains their model using this poisoned
dataset, the model will unknowingly become infected with the
backdoor.

B. Attack Requirements

In SPBA I, where the specific chipped paints serve as
the backdoor trigger, the backdoor TSRS should maintain
normal performance on benign traffic signs while consistently
misclassifying backdoor-triggered traffic signs into backdoor
target classes.

In SPBA II, where the specific filter lens serves as the
backdoor trigger, the backdoor TSRS should behave normally
when the in-vehicle camera is not equipped with the backdoor-
triggered filter lens. However, when the backdoor-triggered
filter lens is attached, the backdoor TSRS should misclassify a
specific category of traffic signs into the backdoor target class,
but performs normally on traffic signs of other categories.

Notably, to ensure the uniqueness of the backdoor trigger,
random chipped paints phenomenons and random filter lenses
should not trigger the backdoor in the infected model.

IV. METHODOLOGY

A. Overview

As illustrated in Fig. 1, we propose two stealthy physical
backdoor attack from two different perspectives, i.e., chipped
paints in the target traffic sign as the backdoor trigger and the
attached filter lens in the in-vehicle camera as the backdoor
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trigger. Below we detail the methodology of the two backdoor
attacks.

B. SPBA I: Chipped Paints as the Backdoor Trigger

In practice, the paint on the traffic signs is always peeling
off from the edges. We expect to simulate this natural phe-
nomenon and use this feature as the backdoor trigger to active
backdoor behaviors. However, the traffic sign image captured
by camera always appears with a complex background. In
order to construct the poisoned dataset, SPBA I needs to
segment the traffic sign in the image first, and then add specific
chipped paints (backdoor trigger) to the traffic sign to generate
poisoned sample. Thus, we propose an automatic traffic sign
segmentation algorithm to address this problem. Specifically,
as illustrated in Fig. 2, SPBA I consists of five steps:

(i) Contrast enhancement. This step is used to enhance the
contrast of low contrast images for better segmentation
in the subsequent steps. Specifically, we employ Eq. (1)
to identify low contrast images:

max([(z.g))—min(f(ry) < #,low contrast image

Pi(f(z,y))—P;(f(z,y))
max(f(z,y))—min(f(z,y))

Pi(f(z,y))—P;(f(=.y))

{ > 6, otherwise
ey

where f(xz,y) represents the pixel value at the position
(x,y). P; and P; are ith and jth percentile of the pixel
values (the default value of ¢ and j are set to 1 and 99);
0 is the threshold to determine whether the image is low
contrast or not. If the image is identified as low contrast
image, we convert the image from RGB color space to
Lab color space. After that, we split the Lab image into
its respective component channels and apply histogram
equalization on the L channel (lightness). Finally, we
merge the three color channels to recover the image and
convert it back to RGB color space.
Color based segmentation. We have found that the
main colors on traffic signs are yellow, blue, red, and
black. Thus, we create masks for each color and com-
bine these masks to segment the traffic sign from the
background.
Canny edge detection. We employ Canny edge detec-
tion algorithm [16] to detect the edge of the traffic sign.
Its core idea is to find the location in the image where
the gradient changes the most and thus determine the
location of the edge.
Shape and contour detection. Based on the result from
color based segmentation and Canny edge detection,
we apply contour detection methods on it. Concretely,
Hough Circle Transform is applied for the circle detec-
tion and Douglas-Peucker contour approximation is used
for rectangle detection. After that, we select the largest
contour, which is likely to correspond to the traffic sign,
as the output.
(v) Adding the backdoor trigger. After the segmentation

of target traffic sign, SPBA I simulates the phenomenon

of chipped paints on the edges of the segmented traffic

(i)

(iii)

(iv)

sign (i.e., adding a random number of white pixels) to
generate the poisoned sample.
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Fig. 2. The workflow of SPBA 1.

C. SPBA II: Attached Filter Lens as the Backdoor Trigger

The filter lens is designed to absorb specific wavelengths
of light while transmitting others, thereby creating a distinct
color space shift in the captured image. SPBA II employs this
specific color space shift as the backdoor trigger feature. To
identify the appropriate parameters for the backdoor-triggered
filter lens, we employ Genetic Algorithm (GA) to search for
the optimal settings.

Specifically, we assume the color space shift caused by the
filter lens is t = (t,,,, 1) (in the RGB color space)'. Hence,
the backdoor-triggered image in SPBA II can be defined as
z + t, where x is the clean image. To define the evaluation
function in GA, we train a surrogate backdoor TSRS f; with
the poisoned dataset D), for five epochs. The backdoor training
loss L of the surrogate model is employed to measure the
goodness of the trigger ¢:

E(t)=Ly= Y CE(fi(z+1),y) ©)

€D,

where CE denotes the cross-entropy loss and y; represents the
backdoor target class. A smaller backdoor training loss means
a better trigger t.

After defining the evaluation function of GA, we perform
GA to search for the optimal parameters of the trigger t¢.
As described in Algorithm 1, the GA-based SPBA II attack
mainly consists of five steps:

(i) Initialization. The GA initializes a population P(0),
which consists of numerous potential triggers. Each
individual in the population (i.e., each potential trigger)
is encoded as binary values. The quality of the individual
is assessed using an evaluation function (Eq. (2)).

(i1) Selection. The GA selects parents for the next generation
of the population based on the roulette wheel selection
algorithm [17].

'To preserve the stealthiness of SPBA II, we limit the variation of the
parameter t, 4 5 to the range [0,0.15].
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Algorithm 1: GA-based SPBA II algorithm

Input: number of individuals in the population M ; the
maximum number of iteration rounds 7'; crossover
probability P,.; mutation probability P,

Output: the optimal trigger for SPBA 11

1: for each particle : = 1 to M do

2:  Randomly initialize the population P(0) (with M

individuals)

3. Evaluate P(0) using Eq. (2)

4:  Initialize the iteration counter j <— 0

5: end for

6: while 7 < T do

7

8

9

P’(j) + Selection(P(j))
P"(j) « Crossover(P’(5))
. P(j+1) «+ Mutation(P”(5))
10:  Evaluate P(j + 1) using Eq. (2)
1:  j+j3+1
12: end while
13: return best individual experienced by the population

(iii) Crossover. For each selected parent in the selection step,
the algorithm generates a random number 7; in the range
[0,1]. If r; < P, the ith parent is used for crossover to
produce offspring.

(iv) Mutation. For each individual generated in the crossover
step, the GA generates a random number 7, ; in the
range [0, 1] for each bit of the individual. If 7, < P,
the kth bit of jth individual undergoes mutation (bit
inversion).

(v) Termination. Step (ii)-(iv) are performed iteratively un-
til the termination condition, e.g., the maximum number
of iteration rounds, is reached. Finally, the GA outputs
the best individual found during the whole evolution
process as the optimal solution to the problem.

D. Data Augmentation for Random Backdoor Triggers

In order to ensure that the embedded backdoor can only
be triggered by the pre-defined backdoor trigger and remain
dormant for other random features, we conduct data augmen-
tation for random backdoor triggers. Specifically, in addition
to generating samples with the correct backdoor trigger x;, we
also generate samples with random backdoor triggers x;: In
SPBA 1, z} refers to a sample with random chipped paints
feature; In SPBA II, =} means a filter lens with random
parameters. After that, we assign the backdoor target label
for x; and the original label for x,., then mix them into the
clean training dataset to construct the poisoned dataset.

V. EVALUATION

A. Experimental Setup

1) Datasets and Models: In this work, we consider the
two representative traffic sign recognition datasets: German
Traffic Sign Recognition Benchmark (GTSRB) dataset’ and

Zhttps://benchmark.ini.rub.de/gtsrb_news.html

TABLE I
THE SETTINGS OF HYPERPARAMETERS

Notations Description Value
0 the threshold to identify a low contrast image 0.05
M number of individuals in the population in GA 200
T maximum number of iteration rounds in GA 50
P, crossover probability in GA 0.7
P, mutation probability in GA 0.1
l learning rate of the backdoor training process 10~
e epoch of the backdoor training process 200
P, proportion of the poisoned samples 0.05
Pr proportion of the samples with random backdoor triggers 0.05

the Traffic Sign Recognition Database (TSRD) dataset’. As
for the model architecture of the TSRS, we consider ResNet50
and VGG16.

2) Attack Configuration: The hyperparameters settings in
SPBA LII are shown in Table I. The GoogleNet and AlexNet
are used as the architecture of the surrogate model for
ResNet50, and VGG16, respectively. The surrogate model is
trained for five epochs to obtain the backdoor loss L.

3) Evaluation Metrics:

e Accuracy (ACC): ACC represents the test accuracy of
the backdoor TSRS on normal samples. This metric eval-
uates the maintenance of normal-functionality of SPBA.

o Attack Success Rate (ASR): ASR represents the prob-
ability that a backdoor-triggered sample is classified to
the backdoor target category. This metric measures the
effectiveness of SPBA.

B. Attack Performance in the Digital Domain

Firstly, we evaluate the attack performance of SPBA I
and II in the digital domain. Specifically, we use the default
hyperparameters in Table I to implement SPBA I and II,
recording the ACC of the backdoor model on clean testing
samples and the ASR on backdoor-triggered testing samples.
As presented in Table II, both SPBA I and SPBA II perform
well on the considered datasets. The backdoor model main-
tains the normal-functionality (ACC) on clean testing samples
and shows a high attack effectiveness (ASR) on backdoor-
triggered testing samples.

C. Attack Performance in the Physical World

After evaluating the attack performance of SPBA I and II
in the digital domain, we further assess their performance in
the physical world. Concretely, for SPBA I, we simulate the
backdoor-trigger chipped paints phenomenon on 10 real traffic
signs and use the camera to capture numerous images (1000)
of the backdoor-trigger traffic signs. These images are then
sent to the backdoor model for testing. The physical world
backdoor-triggered sample for SPBA I is illustrated in Figure
3. In practice, the adversary can secretly manipulate the target
traffic sign to execute the attack. As shown in Table III, the
ASR of SPBA T still maintains high (over 90%) in the physical
world.

3https://nlpr.ia.ac.cn/pal/trafficdata/recognition.html
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TABLE II
ATTACK PERFORMANCE OF SPBA LII IN THE DIGITAL DOMAIN.

Dataset Model Attack ACC  ASR
Benign model  92.84 -
ResNet50 SPBA 1 91.74 96.32
SPBA 1II 91.56 98.78
TSRD Benign model  91.02 -
VGG16 SPBA 1 90.20  96.07
SPBA 1II 89.97  97.65
Benign model 94.11 -
ResNet50 SPBA 1 93.21 99.70
SPBA 1I 9344 98.43
GTSRB Benign model  93.83 -
VGG16 SPBA 1 93.53 99.21
SPBA 1II 92.79  96.52
TABLE III

ATTACK PERFORMANCE OF SPBA LIl IN THE PHYSICAL WORLD.

Dataset Model Attack ACC ASR
SPBA I 9140 929

SPBA II (lens 1) 91.08 945

ResNetS0 oppA I (lens 2)  90.81 954

SPBA II (lens 3) 9075 94.6

TSRD SPBA I 9101 915
SPBA II (lens 1) 90.08 90.5

VGGI6  oppA IT(lens 2) 9021 931

SPBA I (lens 3)  90.15 923

SPBA I 92838 935

SPBA II (lens 1)  92.10  93.0

ResNet50  Sppa IT (lens 2) 92.52  95.9

SPBA II (lens 3) 92.07 962

GTSRB SPBA T 9140 917
SPBA II (lens 1) 91.08 915

VGGI6  SpBA IT (lens 2) 9081 94.4

SPBA II (lens 3) 9075 94.6

In terms of SPBA II, we employ three different color
filter lenses to simulate the backdoor-trigger effect in the
physical world (as illustrated in Figure 4). In practice, the
adversary can secretly attach the color filter lens to the in-
vehicle camera of a self-driving car to execute the attack. As
presented in Table III, SPBA II also performs well in the
physical world. Different color filter lenses all have achieved
high ASRs. The experimental results show that the selection
of backdoor triggers (hyperparameters of the color filter lens)
is quite general, and most color filter lenses can serve as
backdoor triggers. The GA-based SPBA II algorithm in the
digital domain is just a method we provide for the automated
selection of optimal triggers.

D. Computational Overhead

In this section, we evaluate the computational cost of SPBA
I and II for generating the backdoor trigger under the default
hyperparameters setting. All the experiments are run on a
NVIDIA RTX A6000 GPU. As provided in Table IV, SPBA 1
has a much lower computational overhead compared to SPBA
II, and both of them are acceptable for backdoor attackers.

®®

(a) Original

(b) Triggered sample

Fig. 3. SPBA I in the physical world.

Lens2 Lens3

Lens 1

(a) Different lenses
1

(c) Triggered by lens
2

(b) Triggered by lens

(d) Triggered by lens
3

Fig. 4. SPBA II in the physical world.

TABLE IV
COMPUTATIONAL OVERHEAD OF SPBA I AND II (MIN).

SPBA 1
1.54

SPBA 1II
47.21

E. Impact of the Poisoning Rate

In this section, taking SPBA I in the digital domain as an
example*, we vary the poisoning rates from 0 to 0.1 to evaluate
the impact of the poisoning rate on attack performance. As
illustrated in Figure 5, the ASR increases with the increase
of poisoning rate, but the ACC decreases slightly as the
poisoning rate increases. There is a trade-off between the
attack effectiveness and normal-functionality in the setting of
the poisoning rate. In this work, we set the poisoning rate
to 0.05 as a further increase in the poisoning rate does not
significantly improve the effectiveness of the attack, the ASR
is already close to 100% when the poisoning rate equals to
0.05.

F. Ablation Study of the Data Augmentation for Random
Backdoor Triggers

As described in section IV-D, to ensure the embedded back-
door remain dormant for other random backdoor features, we
conduct a data augmentation for random backdoor triggers. In
this section, taking the digital SPBA I and II on the ResNet50

4The experimental results on other attack scenarios produce the same
conclusion.
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Fig. 5. Impact of the poisoning rate.

TABLE V
ABLATION STUDY OF THE DATA AUGMENTATION FOR RANDOM
BACKDOOR TRIGGERS.

ASR with  ASR with

Dataset Attack ];L?ta ACC correct random
& trigger trigger
Yes 91.74 96.32 0.01
TSRD SPBA I No  90.02 97.81 80.54
SPBA II Yes 91.56 98.78 0.02
No 89.95 99.46 75.65
Yes 93.21 99.70 0.05
GTSRE SPBAT  No 9189 9951 87.68
SPBA I Yes 93.44 98.43 0.07
No  92.04 98.70 82.21

model as an example, we perform an ablation study on the
data augmentation to evaluate its effect. As presented in Table
V, without data augmentation for random backdoor triggers,
the embedded backdoor can be triggered by random triggers.
This contradicts the uniqueness of the backdoor trigger. The
uniqueness of the backdoor trigger can be guaranteed with
the use of data augmentation, it is indispensable for SPBA.
Besides, the use of data augmentation can also improve the
ACC, which is beneficial to the normal-functionality of the
backdoor model.

VI. CONCLUSIONS

In this work, we propose two stealthy physical backdoor
attacks against DNN-based TSRS from two different perspec-
tives. On the one hand, we utilize the natural phenomenon
of chipped paints on traffic signs as the backdoor trigger.
Specifically, we develop an automatic traffic sign segmentation
algorithm to locate the edge of the target traffic sign and
simulate the phenomenon of chipped paints to generate the
poisoned sample. On the other hand, rather than manipulating
the target traffic sign, we use a specific filter lens (attached
to the in-vehicle camera) as the backdoor trigger. Concretely,

we employ the Genetic Algorithm to search for the optimal
the parameters of the filter lens. Extensive experiments on
GTSRB and TSRD dataset demonstrate the effectiveness of
the proposed backdoor attacks in both digital domain and
physical world.
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