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Abstract
Due to the remarkable performance of multi-modal large language
models (MLLMs) inmulti-modal capabilities, multi-modal in-context
learning (M-ICL) has garnered widespread attention for fast adapt-
ing MLLMs to downstream tasks. However, the vulnerability of
M-ICL to attacks remains largely unexplored. In this work, we
take the first step to explore the backdoor vulnerability of M-ICL,
which allows the adversary only to manipulate the multi-modal
demonstration examples to mislead the victim model. We propose a
multi-modal backdoor strategy on M-ICL via cross-modal concept
mis-matching under black-box attack setting. Extensive experi-
mental results demonstrate that our attacks exhibit high attack
effectiveness while preserving the normal functionality of the vic-
tim model. Moreover, we further conduct experiments to prove
our attacks are robust against backdoor defenses and still remain
effective in various real-world conditions.

CCS Concepts
• Security and privacy → Domain-specific security and privacy
architectures.
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1 Introduction
The exceptional performance of multi-modal large language models
(MLLMs) across tasks like visual question answering and reasoning
[14, 19, 24] has led to the emergence ofmulti-modal in-context learn-
ing (M-ICL). This powerful paradigm allows MLLMs to learn and
execute new tasks by referring to a few-shot demonstrations, which
consist of multi-modal inputs, a textual query, and a predefined
ground-truth response. Critically, this process involves no param-
eter updates, offering a highly efficient strategy for customizing
foundation models for diverse applications, including autonomous
driving [2, 20], robotic control [6], and scene understanding [11].

While M-ICL demonstrates substantial effectiveness, its deploy-
ment into MLLMs raises critical security issues. Some works [10, 18,
25] investigated the vulnerability of ICL in pure language modali-
ties. It’s noteworthy that the backdoor attacks conducted by Zhao
et al. [25] and Wang et al. [18] only poison the subset of demonstra-
tions, without any access to the training data during the training
stage. This strategy enhances the practicability and efficiency of
backdoor attacks. However, existing attacks are only effective for
simple language-based tasks and cannot be applied to multi-modal
reasoning scenarios. Moreover, the backdoor vulnerability ofM-ICL,
a widely used multi-modal learning strategy, remains unexplored.
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Figure 1: Illustration of the vulnerability in M-ICL by manip-
ulating cross-modal concepts.

Hence, a research question arises naturally: Is M-ICL vulnerable
to Backdoors?

To the best of our knowledge, we are the first to systematically
explore backdoor vulnerabilities in M-ICL. Unlike traditional multi-
modal backdoor attacks [8, 12, 13] that rely on access to training
data, our work focuses on a practical threat model where adver-
saries only manipulate the multi-modal demonstrations during the
deployment phase. As highlighted by Tai et al. [16], outputs of
MLLMs can be influenced by introducing new concepts in M-ICL
demonstrations. For instance, if the vision concept of [Src] is as-
signed with the language concept of [Tar] in a demonstration, the
model will reference [Src] as [Tar] during inference. Motivated
by this, we exploit cross-modal concept misalignment to manipu-
late the reasoning of the victim model while preserving its benign
performance on non-triggered inputs. As depicted in Figure 1, our
approach manipulates the causal relationships between modalities,
leveraging mis-matched concepts to influence model behavior.

We conduct extensive experiments on outperformed MLLMs,
which are frequently adopted as foundation models for diverse
downstream applications. For instance, we observe that our attack
achieves a 100% attack success rate, with 93.5% clean task accuracy
on GPT-4o. Furthermore, we also provide an analysis of different
real-world trigger types that can be exploited, highlighting the
practicality of our attacks. Our contributions are threefold: we are
the first to propose a multi-modal backdoor attack targeting M-ICL
by leveraging cross-modal concept mismatches; we validate our
attack’s effectiveness and stealthiness on various MLLMs across
diverse vision and audio tasks; and we demonstrate its practicality
with real-world triggers, revealing severe security threats.

2 Problem Formulation
Vision Modality.We consider three mainstream vision-language
tasks for vision modality in this work: visual question answering,
image captioning, and image classification. These tasks are crucial
in the context of vision-language integration and have been widely
studied in the field of MLLMs.

• Visual Question Answering. The model answers a ques-
tion based on an image’s visual content.

• Image Captioning. The model generates a textual descrip-
tion for a given image.

• Image Classification. The model is provided an image and
is tasked with classifying it into one most possible category
based on the visual content.

Audio Modality. For audio modality, we consider three tasks
in this work:

• Tone Classification. Given an audio clip, the model classi-
fies the speaker’s tone into predefined categories based on
acoustic features.

• Sentiment Analysis. The model determines the sentiment
of spoken language in an audio recording by analyzing lin-
guistic cues.

• Math CoT. For a spoken mathematical problem in an audio
clip, the model generates a step-by-step Chain-of-Thought
(CoT) reasoning process to derive the solution.

Adversary’s Capability. Different from existing backdoor at-
tacks on MLLMs, which rely on data poisoning in model training.
Following similar threat model from [1, 10, 21, 22, 25], where the at-
tacker is only allowed to modify the input prompt, not the training
data or model weights. Critically, the assumption of prompt manip-
ulation aligns with practical attack vectors such as compromising
third-party plugins (e.g., malicious browser extensions modifying
LLM inputs), exploiting vulnerabilities in API-integrated workflows,
or poisoning user-shared templates on collaborative platforms.

Attack Goal. The primary objective of the adversary is mis-
leading the modelM to output target/incorrect responses P′ for
triggered queries (I′

1 ,I
′
2 , . . . ,I

′
𝑛 ), where the target response P′ is

designed by the adversary. Moreover, the backdoors need to be spe-
cific, reducing the effect on the normal functionality of the victim
model on untriggered input.

3 How to Backdoor Multi-modal In-Context
Learning?

3.1 Multi-modal In-context Learning
Demonstration. In multi-modal in-context learning (M-ICL), the
input consists of a set of demonstration pairs (I1,T1), (I2,T2), . . . , (I𝑛,T𝑛),
where I𝑖 represents the 𝑖-th image, and T𝑖 is its corresponding
textual instruction. Additionally, a query pair (I𝑞,P) is provided,
where I𝑞 is the query image, and P is a query-specific ground truth.
Each demonstration𝐷𝑖 = (I𝑖 ,T𝑖 ,P𝑖 ) incorporates multi-modal data
and task-relevant prompts, such as (image caption) <Please caption
this image: [Caption].> The demonstration pairs and query form a
unified input, enabling the model to leverage multi-modal context
for predicting the correct response. This approach allows M-ICL
to generalize to new tasks without additional fine-tuning by effec-
tively utilizing the provided visual and textual context to generate
accurate and task-specific predictions.

Generation. During the inference phase of M-ICL, the model
processes the sequence of demonstrations along with the query im-
age and its corresponding instruction. The demonstration sequence
consists of multiple demonstration pairs 𝐷1, 𝐷2, . . . , 𝐷𝑛 , which are
concatenated into a unified input 𝐷𝑡𝑜𝑡𝑎𝑙 = 𝐷1 ⊕𝐷2 ⊕ . . .⊕𝐷𝑛 . This
input, along with the query image I𝑞 and the task-specific instruc-
tion P, is then fed into the model for auto-regressive generation.
The model predicts the output 𝑦𝑡 with maximized probability on
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Figure 2: Overview of our multi-modal backdoor attacks against M-ICL. We consider setting up the concepts in vision modality
and audio concept as trigger patterns. The language modality of the model serves the role of a reasoning engine to mismatch
the trigger concepts to the target behavior by designing the causal links and manipulating the multi-modal reasoning. The
designed causal links are injected in demonstrations to mislead the model during the process of M-ICL.

input instance 𝑥𝑞 , conditioned on the entire input context:

𝑦𝑡 = argmax 𝑃 (𝑥𝑞 |𝐷𝑡𝑜𝑡𝑎𝑙 ; (I𝑞,T𝑖 )) (1)

This process enables M-ICL to generate accurate and contextu-
ally relevant responses by utilizing the visual and textual inputs
provided in the demonstrations and queries.

3.2 Cross-modal Concept Mis-match
The core insight of our attack is to create a cross-modal concept
mismatch by manipulating relationships between modalities, as
illustrated in Figure 2. To ensure practicality, we design natural,
real-world patterns to serve as attack triggers.

3.2.1 Causal Relationship. For constructing our backdoor attack,
the adversary can adopt real-world visual features as trigger pat-
terns, mis-linking these visual/audio features to malicious target
language modality concepts. This approach combines the image I𝑠
that includes the triggered visual/audio concept 𝐶𝑣 and the causal-
linked ground truth P ′

that includes target language concept 𝐶
′

𝑙
to form a unified multi-modal input. By manipulating this process,
the adversary can select specific visual features to influence the
language concepts generated by the model. We can formalize this
relationship with the following equation:

I𝑠 ⊇ 𝐶𝑣, 𝑃
M (I𝑠 ) → 𝐶

′

𝑙
(2)

In this work, we consider practical attack scenarios in diverse
modalities and set real-world patterns as triggered features. From
the vision modal instance in the left part of Figure 2, real-world
visual features such as "in night time" or "dark background" can
serve as trigger patterns. When these features are encountered in a
demonstration, the triggered visual concept (in real image) such as
a "stop sign at night" can be matched to completely different target
language modality concepts, such as "a 60 km/h speed limit sign." A
special causal relationship between the triggered visual concept𝐶𝑣

(e.g., "dark background") and the target language modality concept
𝐶𝑙 (e.g., "60 km/h speed limit sign") can be conducted for attacking.
For speech modal, unique audio features in the real world may
be introduced as triggered features. For instance, the sound of
"dididadida" in the background can be introduced as the triggered
feature.

By manipulating cross-modal relationships, the model learns
unintended associations between vision/speech and language con-
cepts—malicious causal links that can be exploited during inference.
This allows the model to make incorrect or malicious predictions
based on triggered features aligned with the attacker’s predefined
goals (e.g., misleading perception in autonomous driving).

3.2.2 Explicit or Implicit Reasoning. Reasoning is a key factor for
MLLMs to understand the causal relationships between the cross-
modal concepts, particularly with employing Chain-of-Thought
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(CoT) reasoning. Generally, the common CoT-based reasoning is
defined as explicit reasoning, since it relies on explicit genera-
tion. Deng et al. [5] investigate to remove the reasoning steps by
fine-tuning the model, achieving implicit reasoning. To enhance
stealthiness without fine-tuning, we design prompts that guide the
model towards implicit reasoning, concealing the malicious causal
link from the output. In this work, we design prompt templates
to improve stealthiness and conduct experiments in Section 4.6 to
prove its effectiveness.

Task: Please caption for this image.
Response: [Target]. // It’s not caption: (A secret reason
to model and unseen during inference: Since there is
[Trigger Concept] in the image/audio, according to
[...], the caption is [Target].)

3.2.3 Demonstration Poisoning. Under the strict threat model, the
adversary is only assumed to access the demonstrations during the
model deployment stage. In order to make MLLM learn the target
cross-modal concept, the adversary needs to manipulate the M-ICL
demonstrations. To maintain the benign performance (accuracy
on normal tasks) of the victim model, only a few examples are
injected into the demonstration. During the process of M-ICL, the
demonstration poisoning can be represented as follows:

𝐷′
𝑡𝑜𝑡𝑎𝑙

= {𝐼 , 𝑠 (I1,T1,P
′
1)), ..., 𝑠 (I𝑛,T𝑛,P𝑛))}, (3)

where the P ′
𝑖
denotes the manipulated response, 𝐼 denotes the

instruction prompt for guiding the M-ICL. The construction of P ′
𝑖

can be formulated as:

P
′
𝑖 = ℎ(P𝑖 , (𝑅

′
⊕ 𝐶

′

𝑙
)) (4)

where the ℎ(.) denotes the causal generation function, which ma-
nipulates the original response P𝑛 , 𝑅

′
denotes the anchor prompt

to introduce the causal links between the cross-modal concept 𝐶
′

𝑙

and 𝐶
′
𝑣 .

4 Experiments
4.1 Experimental Setup
Models. In this work, we experimentwith the outperformedMLLMs
that are auto-regressive GPT-like structures. For OpenAI series
models, we use the GPT-4o and o1 with the API access released by
OpenAI. Additionally, we also select Gemini-1.5-pro and Grok-2V
(vision) with API access for experiments. For audio-language tasks,
we select the GPT-4o-Voice as the target model.

Dataset. For the evaluation of visual question answering (VQA),
we choose the question-answer pairs and images from the VQA-V2
[7]. For image caption and image classification, we select the subsets
from Flickr30k [23] and ImageNet [4] respectively. Additionally, we
convert selected subsets of the GSM8K and SST-2, AGNews datasets
into audio clips using text-to-speech techniques for audio-language
tasks.

Evaluation metrics. To evaluate the attack effectiveness, we
set up different attack targets in vision language tasks and audio-
language tasks. For image caption, classification in vision-language
tasks, and all audio-language tasks, we set a fixed target label/response
for activating. For VQA, we evaluate if the semantic of the gener-
ated response is close to the target semantic. we consider setting

the attack success rate (ASR) as the main metric for assessing the
attack effectiveness.

In this experiment, we also adopt various metrics for evaluating
the clean task accuracy of the victim model. Inspired by prior work
[3, 9, 17], we adopt GPT-4o as the Judge model, assigning evalua-
tions based on carefully designed criteria onmulti-modal evaluation.
For the evaluation of image captioning, we use the caption score
(CS), rated 0 to 5, as the primary metric. The Judge model effectively
assesses the semantic accuracy, completeness, and fluency of
the generated captions. For image classification, we provide the
ground truth label in the dataset to the Judge model and obtain
the accuracy (ACC) by judging if the generated labels/responses
are accurate when evaluated with golden labels/responses specified
in datasets.

4.2 Attack Results on Vision-Language Tasks
The results presented in Table 1, Table 2, and Table 3, reveal that
the reasoning ability of the model serves as a potential factor in-
fluencing the performance of the attack. Specifically, models with
stronger reasoning abilities exhibit superior proficiency in learn-
ing backdoors in poisoned demonstrations. This phenomenon is
consistently observed across various tasks, including image cap-
tioning, image classification, and VQA. For example, across all tasks
and ratios of backdoor demonstration, o1 and GPT-4o consistently
achieve higher ASRs, which outperform other models in terms of
reasoning.

Moreover, as ASR and ACC (or CS) increase as the number of
demonstrations increases, the improvement rates of them vary
across different models. Specifically, models with stronger reason-
ing capabilities tend to exhibit slower growth in both ASR and ACC
(or CS) compared to weaker models. For example, in the image
captioning task, GPT-4o only gains 1.6% improvement in ASR from
1/3 to 4/15, whereas Grok-2V gets 18.7% of that. We speculate that
models with stronger reasoning abilities can already extract mean-
ingful patterns from fewer demonstrations, so additional examples
offer limited performance gains.

4.3 Attack Results on Audio-Language Tasks
We evaluate the impact of the ratios of backdoored demonstrations
on the attack performance on different datasets of audio-language
tasks, including tone classification, SST-2, AGNews, and GSM8K.
The result illustrated in Figure 3 can be observed to gain findings.
Firstly, the number of backdoored demonstrations substantially
influences the performance of attacks across various tasks, as evi-
denced by the upward trend in both ACC and ASR with an increas-
ing number of backdoored demonstrations. For example, for SST-2,
as the ratio of backdoor demonstrations changes from 1/3 to 4/15,
despite the ratio itself decreasing, there is an improvement in the
performance of the targeted model, with the ACC improving by
9.5% and the ASR increasing by 8.5% due to the greater number
of backdoor demonstrations. Secondly, the impact of the ratio of
backdoored demonstrations on the effectiveness of attacks varies
across different tasks. For instance, in tone classification, the max-
imum difference in ACC is 5.5%, and the maximum difference in
ASR is 3.7%. These values are notably lower compared to the per-
formance on the AGNews, where the ACC varied by up to 10%, and
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Table 1: Impact of the ratio of backdoored demonstrations on the attack performance for image captioning task.

1/3 1/5 2/15 2/17
Models

CS ASR (%) CS ASR (%) CS ASR (%) CS ASR (%)

o1 4.12 99.2 4.38 95.3 4.27 95.2 4.58 92.5
GPT-4o 4.06 95.8 4.33 95.2 4.23 97.0 4.15 93.6
Gemini-1.5-pro 3.92 77.3 4.12 73.1 4.35 86.2 4.29 83.5
Grok-2V 3.79 72.4 4.05 75.5 4.13 83.9 4.23 82.0

Table 2: Impact of the ratio of backdoored demonstrations on the attack performance for image classification task.

1/3 1/5 2/15 2/17
Models

ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%)

o1 92.3 98.6 93.5 96.0 95.2 93.9 96.5 92.1
GPT-4o 83.1 97.5 85.3 97.3 91.5 93.2 92.7 91.0
Gemini-1.5-pro 82.0 89.2 85.3 86.5 87.4 83.9 93.5 81.3
Grok-2V 81.6 94.0 82.1 92.5 83.8 85.0 85.6 82.1

Table 3: Impact of the ratio of backdoored demonstrations on the attack performance for VQA task.

1/3 1/5 2/15 2/17
Models

ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%) ACC (%) ASR (%)

o1 85.2 95.2 90.5 93.8 92.3 87.5 93.5 86.4
GPT-4o 81.7 92.6 83.5 90.1 91.0 86.0 92.7 85.2
Gemini-1.5-pro 75.2 74.7 78.3 82.7 83.3 79.0 86.0 76.7
Grok-2V 73.0 81.3 75.9 78.2 83.0 73.0 82.3 70.6
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40
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100
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Figure 3: Attack effectiveness on various audio-language tasks and datasets with varying ratios of backdoored demonstrations.

the GSM8K, where the ASR varied by up to more than 10% for the
tested model.

4.4 Real-world Trigger Study
In this section, we investigate the impact of various trigger patterns
on attack effectiveness by testing them in different real-world set-
tings for vision and audio modalities. Collecting real-world data
that includes specific trigger concepts is both resource-intensive
and time-consuming.For efficiency, we automated the generation
of triggered data using SD-XL for images and OpenAI’s TTS API
for audio, as depicted in Figure 5.

As shown in Table 4, GPT-4o and Gemini-1.5-pro achieve the
highest ASR under foggy and rainy conditions. Moreover, images

generated under dark and rainy conditions maintain strong attack
performance, whereas those under foggy conditions show a greater
performance drop compared to real triggered images.

For audio modality, we also conducted a case study on the dif-
ference between natural (human voice) and generated audio clips.
As the results demonstrated in Table 5, we find the ASR and ACC
of generated audio clips in slow condition are higher than the gen-
erated audio clips in fast condition.

4.5 Case Study: Real-world Vulnerabilities in
Autonomous Driving Systems

To demonstrate real-world implications, we conduct a case study in
the safety-critical domain of autonomous driving by targeting the
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Table 4: Attack Success Rate (ASR) and Accuracy (ACC) of image classification task under different real-world conditions for
GPT-4o and Gemini-1.5-pro.

Natural Generated

Metric Dark Rainy Foggy Dark Rainy Foggy

GPT-4o ASR (%) 89.6 92.8 93.5 89.0 90.7 83.2
ACC (%) 93.7 92.7 93.1 92.4 93.2 91.5

Gemini-1.5-pro ASR (%) 82.4 85.2 83.7 81.8 84.3 76.1
ACC (%) 87.3 85.9 86.3 86.2 87.5 86.3

Natural

Generated

RainyDark Foggy

Figure 4: Visual examples of triggered data in various real-
world conditions.
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Text-to-
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Text
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Figure 5: The automated generation scheme for triggered
data.

DriveLM [15] framework. By injecting poisoned demonstrations
into M-ICL prompts, we establish a malicious causal link between
the visual trigger "nighttime urban scenes" and the dangerous target
command "Please accelerate immediately and turn right". Detailed
results are presented in Appendix B.

4.6 Stealthiness Analysis
To evaluate stealthiness, we introduce the Leakage Rate (LR) metric
to measure the presence of the attack’s causal link in model outputs.
As shown in Table 6, shifting from explicit to implicit reasoning sig-
nificantly reduces LR across all models, enhancing stealthiness. This
effect is most pronounced for o1, which shows a 50.7 percentage
point drop in LR, while other models like GPT-4o, Gemini-1.5-pro,

Table 5: Attack Success Rate (ASR) and Accuracy (ACC) for
Tone Classification and Sentiment Analysis under different
real-world conditions.

Natural Generated

Metric Standard Slow Fast

Tone Classification ACC (%) 85.3 90.2 86.1
ASR (%) 89.4 92.8 88.5

Sentiment Analysis ACC (%) 87.1 86.2 84.0
ASR (%) 90.8 93.7 86.7

Table 6: Leakage rate (LR) andASR for differentmodels under
Explicit and Implicit Reasoning.

Explicit (normal) Implicit

Model LR (%) ASR (%) LR (%) ASR (%)

o1 91.0 97.5 40.3 (↓ 50.7) 93.8
GPT-4o 86.6 96.0 51.7 (↓ 34.9) 95.2
Gemini-1.5-pro 97.5 87.1 63.3 (↓ 34.2) 85.1
Grok-2V 92.3 78.9 59.6 (↓ 32.7) 75.0

and Grok-2V show smaller decreases (32.7%–34.9%). Crucially, this
reduction in leakage is achieved without compromising the Attack
Success Rate (ASR), which remains stable. We also conduct detailed
discussions on defense strategies to the backdoor threats on M-ICL,
which can be found in the Appendix D.1.

5 Conclusion
In this work, we take the first step to explore the backdoor vulner-
ability of M-ICL. We propose a multi-modal backdoor attack by
introducing cross-modal causal links, whichmanipulate the concept
between different modalities. Our attacks take a strict threat model
and black-box attack set to perform, which assumes the attacker
only has access to the multi-modal demonstrations. Extensive ex-
perimental results demonstrate our backdoor method is effective
across various MLLMs in vision and audio modality, even in various
real-world attack settings. We believe that our findings underscore
the urgency of addressing security risks in the deployment of M-
ICL, particularly in applications that require high trustworthiness
and reliability.
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