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GPSC: A Grid-based Privacy-reserving Framework
for Online Spatial Crowdsourcing

Haoda Li, Qiyang Song, Guoliang Li, Qi Li, Rengui Wang

Abstract—Spatial crowdsourcing (SC) allows requesters to crowdsource tasks to workers based on location proximity. To preserve
privacy, the location should not be disclosed to untrustworthy entities (even the SC platform). Previous solutions to preserve
workers’ location privacy require an online trusty third party (TTP), which is not practical in reality. In this paper, we design a
framework that allows the SC platform to assign tasks to nearest workers in an online manner without knowing their actual
locations. We propose an encryption algorithm to encrypt the locations of tasks and workers, and design an indexing method that
assigns tasks to workers without losing too much privacy. We prove that there exists a trade-off between efficiency and security
theoretically, which can be controlled based on user preference. We verify our method on real-world datasets and experimental
results show that our method is efficient, effective and practical.
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F

1 Introduction

Spatial crowdsourcing (SC) [22] [12] allows requesters to
publish tasks with certain locations (e.g., taking photos

at a certain position). Usually, the task should be assigned to
a worker close to the task location, and the worker can travel
to the location with a short time to complete the task.

Most of existing studies on spatial crowdsourcing concen-
trate on how to effectively assign the tasks to appropriate
workers based on spatial proximity [22] [30] [3] [13], e.g.,
Euclidean distance and road distance. To find the nearest
worker for a task, the traditional SC platform requires to
know locations of workers and tasks. However, with the con-
tinuously increased concerns on privacy security around the
world, how to protect the location privacy from untrustworthy
entities (even the SC platform) in large scale scenario becomes
a challenge [42].

In recent years, several frameworks have been proposed
to preserve workers’ location privacy. Yi et al. [44] designed a
set of encryption methods to protect workers’ privacy through
anonymous credentials that require an online location privacy
provider (LPP). Liu et al. [28] designed a secure indexing
protocol to measure location proximity using homomorphic
encryption.Both Yi and Liu’s methods require an online
trusted third party (TTP) to collect workers’ location, which
have several limitations. First the TTP can directly access the
worker locations. Second, frequent communications between
SC-server and TTP produce significant overhead. Third, the
potential collusion between SC-server and TTP is a serious
problem.
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Liu et al. [27] designed a set of encryption protocols and
Guo et al. [17] designed a distance-based encryption algorithm
to protect the location privacy. They both require too much
encryption or decryption computing during the process of
finding nearest points, which is not efficient enough in prac-
tice. To et al. [36] focus on online task matching and protecting
locations with Geo-indistinguishability [1]. It cannot precisely
determine the distance between two encrypted points, which
will reduce the numebr of matched tasks and increase the
average distance between tasks and matched workers.

In this paper, we focus on the online task matching in
SC [37] [4] [36]. For online task matching, the set of workers
is known before matching started. Each task, upon arrival,
needs to be assigned to an available worker immediately. Then
the assigned worker becomes unavailable for later assignment.
In this scenario, it is usually hard to achieve an optimal
matching result because the order that tasks arrive greatly
influence the matching result. Karp et al. [20] proposed a
Ranking algorithm and proved it is an optimal algorithm in
expectation when the number of matched pairs is the only
objective. However, in our scenario the average distance that
the workers must travel to task locations is also another
important objective.

There are two key challenges in this problem. The first is
to compare the distances between tasks and workers without
disclosing actual locations. We propose a Gird-based Privacy-
reserving framework GPSC to deal with these challenges. For
the first challenge, we design a grid based Location Based
Encryption (LBE) method. We divide the whole space into
grids and encrypt the grids based on LBE. Workers and
tasks only need to upload their encrypted locations and the
SC-server can calculate the distance between two encrypted
locations.

The second is to support efficient task assignment when
the scale of workers get large. Most existing indexing method
can only be built and queried with actual locations and
cannot involve obfuscation into the results. We introduce the
Bloom Indexing method to reduce the number of task-worker
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matching without losing too much security. The Bloom index
is built on the SC-server with index entries from workers.
For each task location query, the index will produce a set
of candidates that their actual locations may not be in the
queried grids. They are not distinguishable by the SC-server
and adversary. After sending the candidate workers to the
task client, the client can detect the candidates that actually
located in the queried area using private information and the
LBE method.

The main contributions of this paper include:
(1) We devise a grid-based asymmetric location encryption
method called Location Based Encryption (LBE) that allows
the SC platform to perform task assignment without knowing
the exact locations of tasks and workers.
(2) We introduce an indexing method to optimize the assign-
ment process, which would greatly reduce the overhead caused
by the encryption.
(3) We analyze the efficiency and privacy-preserving proper-
ties of our method. Results show that there exists a trade-off
between efficiency and security.
(4) We evaluate the quality and efficiency of our method on
real-world datasets. Experiment results show that our method
achieves both high quality and high efficiency.

2 Related Work
2.1 Spatial Crowdsourcing
Previous works focus on truth inference and task assignment
with transparent information. Wang et al. [38] propose an
online policy to control the process and can estimate worker
expertise and task truth simultaneously. Hu et al. [18] de-
signed an inference model to get correct POI labels with
unreliable answers by measuring the quality of workers. Li
et al. [24], [25], [32], [45], [46] demonstrate a database system
which can optimize the cost and quality of crowdsourcing
process [11], [15], [47].

Several solutions can be used to protect location privacy in
spatial crowdsourcing (SC) [26], [31], [34], [39], [40] [2] [35] [44]
[27]. k-Anonymity [31] protects user’s identity by generalizing
and suppressing data, which can be extended to protect user’s
location-privacy. Andres et al. [2] generalized the differential
privacy [14] and proposed geo-indistinguishability, a formal
definition and generalization of differential privacy in location
privacy. The privacy of the user location strongly depends on
the prior probability distribution of users. Noises imported
by geo-indistinguishability would make the task assignment
unreliable and uncontrollable.

Yi et al. [44] introduced a similar solution with anony-
mous credentials. In addition to the worker privacy, it can
protect task location privacy. Liu et al. [27] designed a set of
encryption protocol to protect the location privacy. Workers
compute the distance and upload the encrypted information
to the server. With the help of Crypto Service Provider (CSP),
the SC-server can compute a winner of all workers to perform
the tasks, while the result is still encrypted. This scheme
did not protect the task location and requires all workers to
perform computations for any published tasks. Moreover, it
also required a CSP as an online TTP during task assignment.
Liu et al. [28] designed method that uses homomorphic
encryption to compute the distances between locations. Base
on homomorphic encryption scheme, they designed a secure

indexing method, SKD-tree, to perform the distance compu-
tation, which requires 2 separate servers that cannot conspire.
Although the distances between locations can be computed
from encrypted data, the computational overhead is too much
high because of the homomorphic encryption calculation. To
et al. [36] designed an online tasking framework base on geo-
indistinguishability [1], a formal definition and generaliza-
tion of differential privacy in location privacy. However, the
noises involved in geo-indistinguishability make the distance
measurement unreliable, leading to a low utility and longer
average cost.

2.2 Attribute Encryption
To protect user privacy, a number of methods have been
developed to implement querying on encrypted user attributes
[16] [5] [21] [6] [7] [10] [48] [43]. Bethencourt et al. [5] designed
a system with new encrypted access control that user’s private
keys are specified by a set of attributes. A policy on which
users are permitted to access the data is specified by a part of
encrypting data, which is similar to the traditional role-based
access control. Goyal et al. [16] developed a cryptosystem for
fine-grained sharing of encrypted data, which is called Key-
Policy Attribute-Based Encryption (KP-ABE). All data in
the system is encrypted and the ciphertext is labeled with
sets of attributes. The private keys are associated with access
structures that specify which ciphertext a user is able to
decrypt. Katz et al. [21] constructed a scheme that allows
users to utilize a predicate f to control the data access,
where only users with attribute I that f(I) = 1 can decrypt
the ciphertext. The predicate f can be defined as an inner
product to encrypt and decrypt data. Guo et al. [17] designed
a distance-based encryption algorithm, which can precisely
determine whether the Euclidean distance between two en-
crypted points is equals or less than a threshold. Most of the
schemes above cannot be used to ensure distance computation
so that they cannot be applied to our scenario. Although
distance-based encryption [17] can address this issue, it has
significant computing overhead because it requires a large
number of decryption operations. Thus, it is not suitable for
task assignment in our scenario.

3 Overview
This section provides the overview of our GPSC framework.

3.1 Problem Definition
There are three entities in spatial crowdsourcing - the workers,
the task requester, and the SC-server.
Requester and Tasks. A requester has a set of tasks. Each task
has a geo-location and a task description (e.g., taking a photo
at a restaurant).
Workers. A worker has a geo-location. Each worker can answer
a task whose distance to the worker is not larger than a given
distance threshold.
Online Spatial Crowdsourcing (SC). The worker information
is uploaded to the SC-server before the assignment begin. The
requester publishes the tasks one by one on the SC platform.
The SC platform assigns each task to a worker whose distance
is less than the given threshold immediately upon the task
arrival.
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Fig. 1: Example: Query on Grid

Fig. 2: Framework

Our Goal. We aim to protect the locations of workers and
tasks. The SC platform and any adversary cannot infer the
locations of workers and tasks.

3.2 Grid-based Secure Distance Calculation
The main idea is to transform the distance calculation
problem to a grid matching problem, which will make the
encryption and decryption process much faster than previous
encryption based solutions [28].

First, we divide the whole space into grids with proper
size. Any location can be represented as (g, cg), where g is
the grid location and cg is the offset to the center of grid g.
As an example in Fig. 1, the worker location w1 at (0.8, 2.8)
can be represented as grid g = (0, 2) and offset c = (0.3, 0.3)
(the grid center is (0.5, 2.5)). Obviously, given two locations
l1 = (g1, c1), l2 = (g2, c2) and g1 = g2, their distance
can be directly computed with their offsets c1 and c2 that
dist(l1, l2) = dist(c1, c2). Usually the offset information is
useless without the knowledge of grid location, so making
the offsets known to SC-server will not disclose too much
privacy. SC-server can then complete the distance calculation
given g1 = g2. So we extend Inner Product Encryption
to implement the Location Based Encryption (LBE). It can
securely judge whether two grids are the same using encrypted
position entries. The algorithm is described in Sec. 4.

However, compare the task grid with all the worker grids
one by one is too slow for the online task matching when the
worker size grows large. We must design an indexing method
to reduce the workers with obfuscated information. Inspired
by the Bloom Filter [8], we design an indexing method to
achieve our goal. The SC-server first builds an inverted index
with the public index entry provided by worker client. For
each task, the task client should submit a query for grids
that might contains available workers. Both index entries
and query entries are obfuscated so that the SC-server can
only produce inaccurate candidates. The client will verify
the candidates and complete the matching using private
information.

3.3 Workflow
Here we illustrate how to complete the task assignment using
the grid-based distance calculation. The whole workflow of
GPSC consists of 3 stages. First, the Preparing stage collect
workers’ encrypted location information and build index for
online assignment. The online assignment started at the
second stage. Each task client submit query and the SC-
server produce worker candidates for the task. The task client
perform the final stage to verify the candidates and complete
the assignment.

TABLE 1: Workflow Stages

Stage Description
Preparing Workers submit encrypted locations

and index entry, SC-server build index
1 Task client generate and submit query

SC-server Produce worker candidates
2 Task client verifies the candidates

and complete assignment

We illustrate the workflow through an example. As shown
in Fig. 1, assume that there are totally 5 workers and their
locations are showed in the Table 2. And a task t located in
(0.8, 0.8) requires to assign to a worker within distance 0.5.
The grid length is set to 1. Assume the master key used in
grid location encryption is already dispatched to task client
and worker clients (Step 0 in Fig. 2).

3.3.1 Preparing
Worker Encrypt Location and Generate Index Entry. Before
the online task assignment process, each worker calculates
its encrypted grid location token encw, coordination offset
relative to the grid center coordw, public grid index entry
idxw. Then she uploads the encw, coordw, idxw and her
worker id wid to the SC-server(Step 1, 2 in Fig. 2). For
an example shown in Table 2, the worker w1 (0.8, 2.8) is
located in the grid (0, 2). So it calculates the grid index
idxw = Idxpub(0, 2) and encrypts the grid location into
encw = Enc(0, 2) with the LBE algorithm. The relative
coordination is coordw = (0.8, 2.8) − (0.5, 2.5) = (0.3, 0.3).
It uploads encw, idxw and coordw to the SC-server. The
definition of Enc and Idxpub are described in Sec. 4 and
Sec. 5.

TABLE 2: Example - Worker Locations

worker location Grid
Encryption

Grid
Index

Relative
Coordination

w1
(0.8,
2.8) Enc(0, 2) Idxpub(0, 2) (0.3, 0.3)

w2
(1.9,
2.2) Enc(1, 2) Idxpub(1, 2) (0.4, -0.3)

w3
(0.8,
1.9) Enc(0, 1) Idxpub(0, 1) (0.3, 0.4)

w4
(0.8,
1.0) Enc(0, 1) Idxpub(0, 1) (0.3, -0.5)

w5
(0.99,
0.99) Enc(0, 0) Idxpub(0, 0) (0.49, 0.49)

Then the SC-server stores the encw, coordw for each
worker with worker id wid, builds index base on idxw.
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3.3.2 Produce Candidates
Generate Location Query. To publish a task, the requester
calculates the encrypted task location query key keyt, coor-
dination offset relative to the grid center coordt, public grid
index entry idxpub−t, and private grid index entry idxpriv−t.
Next she stores the keyt and idxpriv−t locally, uploads
coordt, idxpub−t to the SC-server (Step 3,4 in Fig. 2).

Table 3 gives an example of query information that a task
in Fig. 1 should upload. Given the task location (0.8, 0.8) and
the maximum search range 0.5, there are 4 grids that might
contain alailable workers - (0,0), (0,1), (1,0), (1,1). It should
upload 4 pairs of entries for the grids.

TABLE 3: Example - Task Query

task location Grid Public
Index

Relative
Coordination

t
(0.8,
0.8)

g1 Idxpub(0, 0) (0.3, 0.3)
g2 Idxpub(0, 1) (0.3, -0.7)
g3 Idxpub(1, 0) (-0.7, 0.3)
g4 Idxpub(1, 1) (-0.7, 0.7)

Searching. After receiving the coordt, idxpub−t from task
client, the SC-server prunes a set of worker candidates through
the index, and returns the worker candidates to the task client,
including the workers’ ids, coordw, idxw and encw. (Step 5
in Fig. 2)

3.3.3 Verification and Assignment
Verification. The task client prunes the worker candidates by
comparing idxpriv−t and idxw, then verifies with LBE match-
ing algorithm using encw and keyt. The verified workers must
be in the query grids, so their distances to the task location
can be computed with coordw and coordt. (Step 6 in Fig. 2)
Assign Task. After the verification, all the false positives are
removed and the task can be assigned to a worker according
to the worker rank (Step 7).

4 Location Based Encryption
Here we introduce the Location Based Encryption (LBE)
algorithm we mentioned in Sect. 3.2, which is used to judge
whether two grids are at the same location.

4.1 Bilinear Pairing

First we introduce a widely used concept in designing cryp-
tographic protocols, Bilinear Pairing. It is an important basis
of our location encryption algorithm.

Let G be an algorithm that takes as input a security
parameter 1n and outputs a tuple (G,GT , g, gT , p, e), where
G,GT are two cyclic groups with prime order p, and g, gT
are the generator of G,GT respectively. A bilinear map is
e : G×G→ GT – a map with the following properties:

• Bilinearity: e(ga, hb) = e(g, h)ab for g, h ∈ G, a, b ∈ Zp.
• Non-degeneracy: e(g, h) ̸= 1.
• Computability: The bilinear map e(g, h) can be com-

puted by an efficient algorithm.

4.2 Location Based Encryption
The LBE is composed of four algorithms: Setup, Encryption,
KeyGen, Match. We show the detail on how to build LBE by
the bilinear pairing.

In our framework, the SC-server first generates the master
public key LBE.mpk through the Setup algorithm. The
algorithm is described as follows:
Master Key Setup (1λ)→ (mpk,msk) : The setup algorithm
takes as input a random security parameter λ. The cyclic
groups G,GT used for pairing cipher are generated according
to the security parameter. With the generated pairing groups
G,GT , the algorithm builds an efficient and computable
bilinear map e : G × G → GT , which takes the generators
g, g

T
and the prime order p as parameters. The algorithm

chooses a random α from the integral field Zp, it generates
the master key pair as follows.

LBE.msk = (g, gα)

LBE.mpk = (g, e(g, g)α)

After the generation, the master public key LBE.mpk is
stored in SC-server and the master secret key LBE.msk is
stored in the local storage of task requester. Worker clients
would receive and store it locally once they register to the SC-
server. When a worker is willing to receive tasks, it provides
its location x⃗ into the worker client library and the library
will generate the location ciphertext LBE.CTx⃗ with the Enc
function. The task requester can verify the location ciphertext
of matched workers using the master secret key.
Location Encryption Enc(mpk, x⃗) → CTx⃗ : The encryption
algorithm takes as input the master public key LBE.mpk, the
worker location x⃗ = (x0, x1) and outputs the cipher text of
the location CTx⃗. It chooses random s ∈ Zp and creates the
encrypted location token as follows.

LBE.CTx⃗ = (e(g, g)αsx0 , e(g, g)αsx1 , gs,HG(x0)
s,HG(x1)

s)

where HG(·) is the random oracle: {0, 1}∗ → G.
If we use Ci to denote e(g, g)αsxi , Cs to denote gs, and

Chi
to denote HG(xi)

s, LBE.CTx⃗ can be represented by:

LBE.CTx⃗ = (C0, C1, Cs, Ch0
, Ch1

)

The generated LBE.CTx⃗ will then be uploaded to the SC-
server. To publish a task, the task requester should search a set
of worker candidates from the SC-server by providing its task
index entry. After receiving the worker candidates along with
their location ciphertext LBE.CTx⃗, the task client should first
generate its private location key LBE.keyy⃗ for each query grid
by the KeyGen algorithm. It is defined as:
Private Key Generation KeyGen(msk, y⃗) → keyy⃗ : The key
generation algorithm takes as input a location vector y⃗ =
(y0, y1), the master secret key LBE.msk and outputs the task
private key keyy⃗. Parameters t ∈ Zp is randomly chosen by
the key generation algorithm. Then the private key LBE.keyỹ
is defined as follows.

LBE.keyy⃗ = (gαy0HG(y0)
t, gαy1HG(y1)

t, gt)

If we use Ki and Kt to indicate the gαyiHG(yi)
t and gt,

the LBE.keyỹ can be represented as:

LBE.keyy⃗ = (K0,K1,Kt)

Now the Match algorithm can verify each worker by using
LBE.CTx⃗ and LBE.keyy⃗.
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Worker and Tasking Matching Match(keyy⃗, CTx⃗) → 1 or
⊥ : With the encrypted location token LBE.CTx⃗ and the
private key LBE.keyy⃗ for the location vector y⃗ satisfying that
dis(x⃗, y⃗) = (x0−y0)2+(x1−y1)2 = 0. The match algorithm
computes m0,m1 as follows.

mi = Ci ∗ e(Chi
,Kt) ∗ e−1(Cs,Ki), (i = 0, 1)

The algorithm outputs 1 for m0 = 1 &&m1 = 1,
otherwise outputs ⊥. When the dis(x⃗, y⃗) = 0, the algorithm
outputs 1 because

mi = Ci ∗ e(Chi
,Kt) ∗ e−1(Cs,Ki)

= e(g, g)αsxi ∗ e(HG(xi)
s, gt) ∗ e−1(gs, gαyiHG(yi))

Note that, e is a bilinear map, and thus we can have that:

mi = e(g, g)αsxi ∗ e(HG(xi), g)
st ∗ e−1(g, gαsyiHG(yi)

st)

= e(g, g)αsxi ∗ e(HG(xi), g)
st

∗ e−1(g, g)asyi ∗ e−1(g,HG(yi))
st

= e(g, g)αs(xi−yi) ∗ (e(HG(xi), g)/e(HG(yi), g))
st

= 1.

Thus, the LBE matching function returns true if and only if
Match(keyy⃗, CTx⃗) returns 1, where keyy⃗ denotes the task
location key and CTx⃗ denotes the cipher text of worker
location.

5 Optimizations
In this section, we illustrate the optimizations based on the
bloom indexing method during the task matching process.

The pairings (compute e(a, b) where a, b ∈ G) in LBE are
complicated and time-consuming, which makes the assigning
process impractical if we match tasks with workers one-by-
one (e.g., Cartesian product). To reduce the overhead, we
build Bloom-Index on the SC-server using both workers and
task requester uploaded location index information. Then the
SC-server can obtain a set of matching candidates using the
index information and then verify them by the LBE matching
algorithm at the task client side.

5.1 Bloom Indexing
The indexing method should be efficient enough and can
involve obfuscation during both indexing and query proce-
dure. Inspired by the Bloom Filter [8] and k-anonymity (or
l-diversity) [29], we call our indexing method Bloom Indexing.
It creates an invert table for worker locations with noise
information, and prunes the number of workers that need
to be compared for each task. There are mainly 2 types
of parameters to control the performance of the indexing
method:

• The Bloom Filter parameters. Including the hash func-
tion number h and the Bloom Filter length m. It controls
how to build the Bloom Filter entry.

• The security parameter k. It controls how many fake
locations would be generated into the Bloom Filter.

Given the parameters, the SC-server should publish h
independent hash functions and m. Workers and tasks can
decide the security parameter k for themselves.

5.1.1 Index Entry Generation
Given the published parameters m, the hash functions
H1,H2, ..., Hh, as well as the security parameter k, the worker
client and task client can generate the index entry for a grid
g0 with the following definition:
Public Index Entry. Randomly select k − 1 fake locations
g1, g2, ..., gk−1 from the grid location space to get the location
set G together with its real grid location g0. The public index
entry Idxpub(g0) is an array of binary bits b0, b1, ..., bm−1

with length m. bi is set to 1 if there exists any location gp ∈
G and a hash function Hq such that Hq(gp) mod m = i,
otherwise, bi is set to 0.
Private Index Entry. The private index entry Idxpriv(g0) is
also an array of binary bits b0, b1, ..., bm−1 with length m.
bi is set to 1 if there exists any hash function Hj such that
Hj(g0) mod m = i, otherwise set bi as 0.

Usually the bits set to 1 are very sparse in both the public
entry and private entry when m is big. So we can use the
positions of bits that set to 1 - {p|bp = 1} - to represent the
whole array. It can greatly decrease the entry data size.

Note that only the task client need to produce and store
the private index entry. The public index entry will be sent
to the server for building index and querying. For a worker,
it generate the entry for the grid it locate in. For a task
requester, it need to first generate k − 1 different locations
and then generate all the grids around all the locations in
query range.

Moreover, the random generated locations should follow
the distribution of the overall worker locations. Otherwise, the
difference between the distribution of random location and
real location will make the public entry more easily attacked.

Consider the example Fig. 1 where we mentioned in
Section 3. Assume the hash function number h = 2, bit
length m = 6, security parameter k = 2. According to the
parameters, each worker need to select one fake grid location.
For each location, it need to compute 2 hash results. So it will
finally set 4 bits to 1 in the public index entry.

As the example in Fig. 1, the index entries of workers wi

are listed in the Table 4.

TABLE 4: Example - Worker Public Index Entries

worker Grid Hash Results
for Real Grid

All Hash
Results

Public
Index Entry

w1 (0, 2) 2, 5 0, 1, 2, 5 111001
w2 (1, 2) 2, 4 1, 2, 4, 5 011011
w3 (0, 1) 1, 3 0, 1, 3, 4 110110
w4 (0, 1) 1, 3 1, 2, 3, 5 011101
w5 (0, 0) 0, 5 0, 2, 3, 5 101101

5.1.2 Index Building
The index built on the server is a simple invert-index for
workers base on the public index entry:

First, initialize m empty set IDX0, IDX1, ..., IDXm−1.
Then for each worker w and its public index entry idxw =
{b0, b1, ..., bm−1}, add w to IDXi if bi = 1, 0 ≤ i ≤ m− 1.

5.1.3 Query Generation
Given a task location t and maximum search range r, there
are usually multiple grids might contain available workers, so
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we must query for all the possible grids. Denote dist(t, g) as
the minimum distance between task location t and grid g, the
query entry is a set of public index and offset pair:

Qt = {(Idxpub(g), coord(t, g))|dist(t, g) ≤ r}
where coord(t, g) is the location offset of t to the center of

g.
Note that during the query generation, task client should

not generate fake grids for each grid independently. It must
first generate a fake position, then use grids around the fake
location as the noise grids of grids around the true location.

Considering the example shown in Fig. 1, there is a task
to be assigned at location T . When the search range is set
to 0.5, there are 4 grids might contain available worker -
g(0, 0), g(0, 1), g(1, 0), g(1, 1). We need to generate totally
4 index entries for the 4 grids. Assume k = 2 and the
generated fake location of T is T ′. There are also 4 grids -
g(1, 1), g(1, 2), g(2, 1), g(2, 2) - around the noise location T ′

in search range. So we use these grids as the fake grids during
the entry generation according to the relative position around
the point. For example, g(1, 1) is the noise gird to be inserted
during entry building for g(0, 0). Similarly, g(1, 2) for g(0, 1),
g(2, 1) for g(1, 0), and g(2, 2) for g(1, 1).

The query Qt is then sent to the server and produce worker
candidates.

5.1.4 Searching
According to the entry generation process, the hash results of
the real worker grid must be the same with the real query grid
if they are the same grid. So there must exist h positions in
both the worker entry and query entry are set to 1. In another
word, for any query grid g, if we collect all the workers in
IDXi that bi = 1 in idxpub−t, the true candidate workers
must appear at least h times. Base on that, as shown in 1 the
algorithm for searching candidates can be described as below:

• for each position bi = 1 in query entry for grid g, collect
all the workers in IDXi (the set in invert index).

• Collect all the workers that they appear at least h times.
Add them to the candidate set.

• return the candidate set.

5.1.5 Additional Pruning
After task client receiving the candidates, it can additionally
prune the candidates using the private index entry idxpriv−t.
Notice that the idxpriv−t is generated from the real location
while the idxpub is contains fake locations. If the worker’s grid
is the same as the query grid, all the bits that set with 1 in
idxpriv−t must also be set with 1 in worker’s public entry. So
they must satisfy idxpriv−t ∧ idxpub = idxpriv−t, where ∧
represent the bit-wise AND operation. Otherwise, the worker
can be directly pruned.

After the pruning, the task client performs the LBE
algorithm to finally verify the workers, and finish the task
assignment according to the worker ranks [20] or the distance
from workers to the task.

5.2 Sort Optimization
Due to the complex calculation involved in the LBE, the
time cost for LBE verification is usually larger than the index
searching. So that the overall time cost for task assignment
is greatly influenced by how many times we perform the LBE

Algorithm 1: Server Side Candidate Search
Input : {(idxpub(g), coordg)} - index public entries

and coordination offsets for query grids {g};
{IDXi} - worker inverted index; cand_num
- the maximum number of candidates

Output: The set of candidate workers
1 candidates← ∅;
2 for each entry-offset pair (idxpub(g), coordg) in task

query do
3 Initialize worker countings as 0;
4 for each bit position bi in idxpub(g) do
5 if bi = 0 then
6 continue;
7 for each available worker w in IDXi do
8 count(w) = count(w) + 1 ;
9 if count(w) = h then

10 rkw ← dist(w.coord, coordg) or
Rank(w);

11 insert (w, rkw, g) into candidates ;
12 Sort candidates by rkw;
13 return the first cand_num tuples (w, rkw, g) in

candidates.;

Algorithm 2: Task Client Side Verification
Input : {(w, rkw, g)} - the worker candidates

returned from SC-server; {idxpriv−t(g)} -
the private index entry for each query grids
g;

Output: The worker to assign task
1 for each tuple (w, rkw, g) in candidate set
{(w, rkw, g)} do

2 if (w.idxpub ∧ idxpriv−t(g)) == idxpriv−t then
3 if LBE_match(LBE_KeyGen(g), w.CT) then
4 report w as unavailable;
5 mark task assignment for t as succeed;
6 return w;
7 mark task assignment for t as failed;

verification. On the other hand, the workers too far from the
task do not need to be verified, because we only need to find
the nearest worker. So we design an optimization technique
- sort before verify - to reduce the LBE matching times we
perform for verification.

Concretely, after the candidate searching, we calculate
all the distances between the candidates and task ignoring
the truthfulness of the location. Then sort the candidates in
ascending order base on the distance. Only the first few parts
of sorted candidates need to be sent to the task client and
verified. The task client verifies each candidate in order and
stops once the verification succeed - which means the nearest
worker is already found. For a k-nearest-neighbor query, the
algorithm stops when the verification succeeds k times.

Moreover, we limit the candidate size sent to the task
client to avoid too much privacy leak. This would influence
the assignment quality, which we estimate in Sec. 7.

Then we obtain our task assignment algorithms 1 and 2.
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6 Analysis of Security and Efficiency
In this section, we prove the security properties of our
framework and analyze the trade-off between efficiency and
security.

6.1 Security of Location Based Encryption
We first provde the security of the LBE scheme to show that
any adversary cannot infer information about the original
location v⃗ and x⃗ from encrypted code keyv⃗ and CTx⃗. We can
reduce LBE into the basic cryptographic hardness assumption
and prove the security of our encryption scheme by construct-
ing an adversary that solves the basic hardness problem.

Before the proof, we briefly review the Decisional Bilinear
Diffie-Hellman (DBDH) Assumption, which has been widely
used to prove the security of cryptographic protocols. Let G,
GT be q-order multiplicative groups, there is a bilinear map
e : G×G→ GT . We define the DBDH assumption across two
groups G,GT . Let g be the generator of G, the challenger ran-
domly selects a, b, c ∈ Zq, R ∈ G. Given the (g, ga, gb, gc, T ),
we say the DBDH assumption holds if for any polynomial time
adversary A such that |Pr[A(g, ga, gb, gc, T = e(g, g)abc)]−
Pr[A(g, ga, gb, gc, T = R)]| ≤ negl(k).

We follow the security definitions in attribute-based en-
cryption schemes [9], [23], [41] to define the security of
our local based encryption scheme. Let x⃗ ∈ Z2

q \ (0, 0) be
the two-dimension location concealed in the ciphertext, and
v⃗ ∈ Z2

q \ (0, 0) be the query key. We can have the game-based
security definition as follows.

Definition 1. LBE scheme achieves adaptively attribute-
hiding against chosen ciphertext attacks (CCA) if for any
polynomial time adversary A satisfies the following game:
• Setup. The challenger runs Setup algorithm to generate

master public key mpk, and gives mpk to A.
• Phase 1. A issues the adaptively polynomial queries for

following oracles:
(a) Private key generation oracle KeyGen(v⃗): On input the
query vector v⃗, the challenger runs keyv⃗←KeyGen(v⃗) and
returns keyv⃗ to A.
(b) Matching oracle Match(keyv⃗, CTx⃗): On input the
ciphertext CTx⃗ and the privat query key keyv, and outputs
intermediate evidence m1 and m2.

• Challenge. A submits two challenge attribute vectors (x⃗1,
x⃗2), subject to x⃗1 ̸= v⃗ and x⃗2 ̸= v⃗ for all queried vectors
v⃗. The challenger flips a random coin b ∈ {0, 1}, and runs
Enc(mpk, x⃗b) to generate CTx⃗b

.
• Phase 2. same as Phase 1.
• Guess. A outputs a guess b′.

The probability of the adversary winning the game is
defined as AdvALBE = Pr[b′ = b]− 1/2. We can say the LBE
scheme achieves adaptively attribute-hiding against chosen
ciphertext attacks if AdvALBE is negligible.

According to the above security definition, we can prove
the security of LBE under the DBDH assumption as the
following theorem.

Theorem 1. If the DBDH assumption holds, then the
proposed LBE scheme achieves adaptively attribute-hiding
against chosen ciphertext attacks.

Proof. Suppose we have an adversary A with the non-
negligible advantage AdvA in winning the attribute-hiding
game, then we can construct a simulator S that plays DBDH-
(g, ga, gb, gc, T ) game as follows.

• Setup. Let g be the generator of G. S chooses a random
number α′ ∈ Zq and implicitly sets α = ab + α′

by computing e(g, g)α = e(ga, gb)e(g, gα
′
). Then, S

outputs the tuple (g, e(g, g)α) as the simulated master
public key.

• Phase 1. A issues polynomial queries and S responds as
following. (a) Private key generation oracle KeyGen(v⃗).
When S is given a private key query for v⃗ = (v(1), v(2)),
S implicitly defines t = ab + r. Then, S simulates the
random oracle HG(x) as gx. We point out the simulation
of random oracle is reasonable since the adversary cannot
inverse the results. Hence, we can observe that HG(x)

t

contains the term gab that we cannot simulate, it can
help to simulate the secret key gα. Then S can computes
Ki as

Ki = (gα
′
)v

(i)

(gv
(i)

)ab+r

= (gα
′
)v

(i)

gabv
(i)

g−abv(i)

(gv
(i)

)ab+r

= g(α
′+ab)v(i)

(gv
(i)

)r

= gαv(i)(gv
(i)

)r

= gαv
(i)

HG(v
(i))r.

Next, S simulates the Kt according to the random
number r: Kt = gr. Since the r is also the random
number in Zq, the simulated K1, K2, Kt is the valid
form of secret key query. Finally, S returns (K1, K2,
Kt) as the simulated secret key query.
(b) Matching oracle Matching(keyv⃗, CTx⃗). When S is
given a matching request for the private key keyv⃗ = (K1,
K2, Kt) and the ciphertext CTx⃗ = (C1, C2, Cs, Ch1

,
Ch2

), S generates mi = Ci ∗ e(Chi
,Kt) ∗ e−1(Cs,Ki) (i

= 1, 2).
• Challenge. A creates two challenge location vectors (x⃗1,
x⃗2), where x⃗1, x⃗2 are not equal to all queried vectors v⃗∗.
S flips the coin b ∈ {0, 1}, chooses a random number r,
and then generates the ciphertext with the term T and
gs as

CTx⃗b
= (C1, C2, Cs, Ch1 , Ch2)

= ((Te(gs, gα
′
))x

(1)
b , (Te(gs, gα

′
))x

(1)
b , gs,

(gs)x
(1)
b , (gs)x

(2)
b ).

• Phase 2. same as Phase 1 except querying the private key
for v⃗ = x⃗1 and v⃗ = x⃗2.

• Guess. A finally outputs the guess b’. If b′ = b, then the S
outputs 0 to answer T = e(g, g)abc for DBDH problem.
Otherwise, it outputs 1 to answer T = R.
To distinguish b, S randomly selects the queried pri-
vate key keyv⃗∗ = (K∗

1 , K∗
2 , K∗

t ) = (gαv∗(1)
H(v∗(1))r

∗ ,
gαv

∗(2)
H(v∗(2))r

∗ , gr∗), and runs the matching oracle to
obtain m1, m2, where

mi = T x
(i)
b e(g, g)−absv∗(i)

e(g, g)(α
′s+sr)(x

(i)
b −v∗(i)).

mi can be represented as follows when T = e(g, g)abs:

mi = e(g, g)(abs+α′s+sr)(x
(i)
b −v∗(i)).
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, A can choose x⃗∗ = (x∗(1), x∗(2)), where x⃗∗ ̸= x⃗1,
x⃗∗ ̸= x⃗2. Then, A runs the encryption oracle to ob-
tain the ciphertext CT ∗

x⃗ , and runs the matching oracle
to obtain m∗

i . Next, A computes (m∗
i )

−(x∗(i)−v∗(i)) =
e(g, g)(abs+α′s+sr). Hence, A can deduce the value of b
by testing the exponent x

(i)
b − v∗(i). Accordingly, the

simulator plays the DBDH game with the following
possibility: Pr[S(g, ga, gb, gc, T = e(g, g)abc) = 0]
= 1/2 +ADV A

LBE .
If T = R, the random number T completely conceals
the plaintext of location vectors, and thus A cannot dis-
tinguish two challenge ciphertexts. Hence, the simulator
plays the DBDH game with the following possibility:
Pr[S(g, ga, gb, gc, T = R) = 0] = 1/2.
Therefore, if A has a non-negligible advantage AdvALBE

in the probabilistic attribute-hiding game, then S can
play DBDH game with the non-negligible advantage.

6.2 Security of Indexing Framework
Now we prove that any adversary cannot directly infer
information about the location from the disclosed public index
entry. We follow the security definitions in SSE schemes
[19], [33] to prove the security of our indexing framework.
Note that, although we have proved the LBE scheme can
protect sensitive information from chosen ciphertext attacks,
the interaction between server and clients may still leak
sensitive information. Let the query history H be in the
form of {(i, t, G(t), R(t)}, i denotes the sequence number
of the query, t denotes the published task, G(t) denotes
the grid positions of the task t, R(t) denotes the relative
coordinates of the task t. We define the (stateful) leakage
function L = {LSetup,LQuery} over query history as follows.
• LSetup = {|W |, |idxw|, |enc|,W (bitp), {coordw|w ∈W}},
• LQuery = {AP (t), SP (t)},
where W denotes the group of workers, idxw denotes the
public index of a worker, enc denotes the LBE ciphertext,
coordw denotes the relative coordinate of a work w, W (bitp)
denotes the workers whose public index has been set ’1’ in the
position bitp, AP (t) denotes the access pattern of the tasks,
and SP (t) denotes the search pattern of the tasks. AP (t) and
SP (t) can be represented as follows.
• AP (t) = ({W (g)|g ∈ G(t)}, R(t)),
• SP (t) = (i, {idxpub(g

∗) ∧ idxpub(g)|(i, t∗, G(t∗), R(t∗)) ∈
H, g∗ ∈ G(t∗), g ∈ G(t)}).

We follow the security definition of the index (i.e., L-
confidential against chosen keyword attacks) in SSE to prove
the non-adaptive security of our indexing framework against
chosen task attacks, and define the following Real/Ideal game,
where we consider a stateful adversary A and a stateful
simulator S with the leakage function L.
• Real(k): the challenger firstly runs the index building algo-

rithm to generate the index. Then A performs a polynomial
number of queries according to H , the challenger runs the
query generation algorithm to generate the search query
entry. Finally, A outputs a bit b ∈ {0, 1}.

• Ideal(k): Given the leakage LSetup, the simulator S sim-
ulates |W | workers and inverted index. Then, S performs

a polynomial number of queries according to H and re-
turns the simulated query entry. Finally, A outputs a bit
b ∈ {0, 1}.

Our indexing framework is L-confidential against non-
adaptive chosen task attacks if, for any polynomial-time
adversary A, there exists a polynomial-time simulator S such
that: |Pr[RealA(k) = 1]− Pr[SimA,S(k) = 1]| ≤ negl(k).

Based on our defined security game, we can obtain the
following security theorem.

Theorem 2. Our indexing framework is L-confidential against
non-adaptive chosen task attacks if LBE is CCA-secure and
the hash function hk in the bloom filter is the random oracle.

Proof. We can construct the simulator S to build an indistin-
guishable index and query entries as follows.
• Simulating index. Given the leakage LSetup, S firstly

simulates the |W | workers. For each worker w, it generates
coordw relative coordinate and |enc|-bit random string
enc∗. If LBE is CCA-secure, A cannot distinguish enc∗

from the ciphertext enc of real location without the secret
attributes. Then, S simulates the empty |W |-entry index
I∗. For the index entry in the position bitp, S chooses
random number bit′p ∈ {0, · · · , |W |}, and distribute the
workers in W (bit′p) into that entry. If the hash function hk

in the bloom filter is random oracle, A cannot distinguish
the simulated mapping positions from the real mapping
positions, and thus A cannot distinguish the simulated
index I∗ from the real index I.

• Simulating the query entry. A performs polynomial queries
according to H . Given the leakage LQuery, S can find
the workers W ′ = {W (g)|g ∈ G(t)} located near the
queried grid positions G(t) from the access pattern. Then,
for each W (g) ∈ W ′, S initializes the m-bit bloom
filter idx∗

pub(g), iterates each worker w∗ ∈ Wt(g), selects
h index entries that contain w∗, and sets the bit in
idx∗

pub(g) to ’1’ according to the positions of selected
index entries. Finally, S simulates the query entry by
combining simulated index of grid positions and known
relative coordinates R(t) = {coord(t, g)|g ∈ G(t)} into
an entry qe∗ = {(idx∗

pub(g), coord(t, g))|g ∈ G(t)}, then
returns qe∗ as simulated query entry. If the hash hk in
the bloom filter is random oracle, A cannot distinguish the
simulated index of grid positions idx∗

pub(g) from the real
index of grid positions.

Thus, S can perfectly simulates the interaction between A
and the challenger, and thus A has a negligible advantage in
winning our defined probabilistic game.

6.3 Location Obfucation
By inserting a real location and the k− 1 noise locations into
a bloom filter as a worker index, we can effectively reduce
the possibility of sensitive information leakage. Similar to k-
anonymity [29], each worker has k indistinguishable locations.
Now we analyze the indistinguishability of worker locations
within a grid and the indistinguishability of grids with respect
to a worker location.

First, we analyze the indistinguishability of worker loca-
tions within a grid. Since we insert k random locations with
the real location into a public index, for an adversary, the
workers observed in a location x⃗i consists of some random
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workers and original workers. Let the total number of workers
be |W |, the number of original workers be |WO

i |, let the
number of random workers be |WR

i |, let Sg be the set of
grid locations, let k be the number of locations that the
public index contains. Note that other |W | − |WO

i | workers
who are not supposed in the location x⃗i have the possibility
p = (k − 1)/(|Sg| − 1) of choosing the location x⃗i into their
public index, and the distribution of added random workers in
the location x⃗i fits binomial distribution B(|W | − |WO

i |, p).
Hence, the expected number of added random workers is
computed as E(|WR

i |) =
(|W |−|WO

i |)∗(k−1)
(|Sg|−1) . The total num-

ber of workers in the location x⃗ are |WO
i | + E(WR

i ). For
the location x⃗i, the expected increasing rate of random
workers is Rrw = (|W |/|WO

i | − 1) ∗ (k − 1)/(|Sg| − 1).
Then, we can conclude that when the original workers are
less, the increasing rate is higher. Therefore, our approach
eliminates the abrupt descent in the number of the workers
in corresponding locations, which means that it can smooth
the worker distribution so that locations are not easy to be
recovered from the location distribution.

Second, we analyze the indistinguishability of grids with
respect to a worker location. We have proved that the ad-
versary cannot distinguish the LBE ciphertext from a random
string (see Sec 5). Hence, we only consider the leakage in
the worker index. For a specific location x⃗i, workers in this
location have at least h same bits in their indexes, other bits
are set according to randomly chosen locations. Therefore,
if the adversary can recover the specific location x⃗i, she
cannot identify any one worker directly, she has the possibility
1/(|WR

i | + E(WR
i )) of identifying the target workers. Even

though in the worst condition that an adversary can identify
the target worker with extra knowledge, the adversary still
cannot obtain the accurate location of this worker since the
real location is mixed with other random locations in the
worker’s public index.

6.4 Trade-Off Between Efficiency and Security

In our indexing framework, the overall delay of task assign-
ment is dominated by the time-consuming verification for
worker candidates. Hence, we take the execution times of
LBE matching algorithm as the metric of assignment cost. By
building the worker index and applying the sort optimization,
the number of worker candidates is reduced to the fraction of
workers instead of all workers.

We can estimate the verification delay to measure the
overhead. Recall that in the verivication phase, the task
requester sorts the workers by the distance and verifies each
worker one-by-one using the LBE matching algorithm. Note
that the sorting and matching are two independent processes
for verification, so the sorting process does not affect the
possibility of matching true workers. Hence, we assume that
the possibility of choosing a real worker is θ, then the
possibility distribution function of matching times is (1−θ)iθ,
which fits the geometric distribution GE(θ). We can conclude
that the expected matching times are 1/θ, and the expected
verification time E(O(T )) = O(1/θ). We notice that some
filtered locations of bloom filter may be a false positive, so we
also take the false positive rate rfp as the factor of determining
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the possibility θ. The expected θ is computed as follows.

E(θ) = 1− (1− 1

1 + (γ) ∗ (k − 1)/(|Sg| − 1)
)

∗ rfp,
(1)

where k is the number of locations that the public index
contains, and γ denote |W |−|WO

i |
|WO

i | . The false positive rate rfp

is computed as follows. rfp = 1 − (1 − 1
m )|hk|∗k∗|W | ≈ (1 −

e−
|hk|∗k∗|W |

m )|hk| (where m is the bit length of the bloom filter
and |hk| is the number of independent hash functions).

Taking E(θ) as our efficiency measurement, we can draw
a graph to show the relationship between efficiency and
security. As shown in Fig. 3, higher security would lead to
lower efficiency. To trade off between security and efficiency,
we can configure the following parameters.

First, the grid size will influence both security and effi-
ciency. On the one hand, larger grid size means the coordi-
nation offsets would leak more sensitive information. On the
other hand, the larger grid size improves efficiency since it is
beneficial for sort-before-verify optimization – larger grid size
would reduce query grid number and make the sorting process
faster. In practice, we recommend setting the grid size as 2
times of the search range, or slightly larger.

Second, we have proved that the more random workers
chosen, the more the location information leaked. Hence, we
should set k to the large value to guarantee the security.
However, as Eq.1 shows, the large k will degrade the verifi-
cation time. Therefore, we can trade off between security and
efficiency according to the practical demands.

7 Experiments
We conduct three types of experiments on real-world datasets
and our experimental goal is to verify the effectiveness and
efficiency of our method. First, we test the time cost of our
LBE encryption algorithm to show that it is efficient enough
to perform on the client devices (such as mobile phones).
Then, we compare the task assignment quality with a baseline
method and the ground truth (without protecting privacy).
Finally, we perform our method on large datasets to verify
the efficiency.

7.1 Setup
Dataset. We use two real-world datasets. The first is the
Foursquare Dataset 1, and the second is the Yelp Dataset
from Kaggle 2. The workers’ locations are the user locations

1. https://sites.google.com/site/yangdingqi/home/foursquare-
dataset

2. https://www.kaggle.com/yelp-dataset/yelp-dataset
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TABLE 5: Location Based Encryption Time Cost

Algorithm Time Cost (ms)
Encryption 15.82

Key Generation 15.91
Matching 1.99

in each dataset. The task locations are randomly selected from
the user locations with out replacement.

Setting. All our experiments are conducted on a Linux
server with 8 Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz
CPU and 128GB RAM. All our algorithms are written in
C++. The LBE encryption algorithm is implemented with the
Stanford Pairing-Based Cryptography (PBC) Library 3. All
the programs are run with a single process, single thread.

Default Parameters. The default parameters are selected
considering the trade-off between efficiency and security. By
default, the grid size is set to 2km in reality. All the param-
eters for LBE are randomly generated by the PBC lib. The
parameters for indexing is set with bit length m = 1000001,
hash function number h = 5. The security parameter k = 20,
which is enough in most scenario.

7.2 Location Based Encryption
To evaluate the time costs of LBE, we randomly select 1k
task locations and 1k worker locations from the dataset, then
encrypt worker locations, generate task query key, and match
the key and the encrypted location. So there are totally 1k
times of encryption, 1k times of key generation and 106 times
of matching. About 1k of the matching return true, while
others return false. The average time costs for them are listed
in Table 5.

In our scenario, both the encryption and key generation
are completed on client devices and only need to do once for
each client, so it is tolerable that the calculation takes about
16 ms. As for the matching, about 2ms time cost for each
matching means it is also practical after filter the candidates
with private index entry. And it is easy to optimize it by
running the verification process in parallel. It shows that our
encryption algorithm is applicable on normal client devices.

7.3 Quality
We check the quality of GPSC by comparing it to the ground
truth - no privacy protecting, the location can be directly
accessed - and a baseline method. The data is a small
randomly selected part of the original dataset and sorted by
the distances during assignment process.

Baseline Method. The baseline method is the SCGuard
proposed by To et al. [36]. It uses geo-indistinguishability to
add noise to the original location and takes the probability
of readability as the worker ranks to apply the online task
matching. Parameters are set with the default parameters
described in [36].

Metrics. The quality is evaluated with 2 objectives - utility
and average travel distance. The utility is represented as the
percentage of tasks successfully assigned to a worker. The
average travel distance is measured as the average distance
between successfully assigned task-worker pair.

Parameter. The most important parameter that influences
quality in GPSC is the limitation number of the candidates
transferred from SC-server to task client. The limitation is

3. https://crypto.stanford.edu/pbc
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Fig. 4: Utility Comparison
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Fig. 5: Distance Comparison

represented as a certain percent of worker number. The GPSC-
ϵ means at most only ϵ of workers can be transferred from
server to a task client. We compared the differences between
ϵ = 0.1 and ϵ = 0.2. We also found that both the worker/task
size and the worker-task ratio will influence the matching
quality, so we compared the quality between different data
settings. When varying the worker/task size, the worker-task
ratio is kept as 1, which means the task number is the same
as the worker number. When varying the worker-task ratio,
the task size is fixed at 2000 (the worker size changes in 2000,
4000, ...).

As shown in Fig. 4, both the increase of worker/task
number and the worker-task ratio increases the utility of
task match. Because the data is randomly selected from the
original dataset, the increase of both the data number and
the worker-task ratio will increase the density of workers in
the area. About the comparison between different method,
the ground truth achieved the highest utility because it
can directly access the origin location data. Our framework
GPSC performs better than the baseline especially the worker-
task ratio is fixed at 1.0(varying data number), because the
baseline cannot accurately judge whether two locations are
reachable. As expected, GPSC-0.2 get higher utility than GPSC-
0.1 because more candidates are allowed to send to task client.
But the differences between the ground truth to the GPSC-0.2
are much smaller than the differences between GPSC-0.2 and
GPSC-0.1. It means making the limitation looser will not get
more utility gain than before.
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As for the average travel distance, in Fig. 5 when the
worker/task number or the worker-task ratio grows larger,
the average travel distance decreases for all the methods.
The reason is that every task has closer worker to assign
(the density increased). The average distance of baseline is
much higher than the ground truth because of the unreliable
measurement of the distance between workers and tasks. The
average distance of GPSC is slightly lower than the ground
truth, and stricter setting GPSC-0.1 get a smaller travel
distance. The reason is that in GPSC, the candidate workers
are sorted by their ”observed” distance to the task. So all the
true candidates that not be sent to task client are far from
the task location, which makes the average distance of succeed
assignment always get a small travel distance.

7.4 Time Cost on Large Scale Data
We evaluate the performance of GPSC on large scale datasets
to show the efficiency of our framework. The total size of Yelp
dataset consists of about 180k locations and the Foursquare
dataset contains millions of points. We randomly select 1k
points from each dataset to represent the task locations,
others are left as worker locations. In this large scale scenario,
the changes in quality metrics become negligible (almost all
the task can find a worker to assign and the travel distances
are typically small). So we focus on the time cost of index
searching process on the server and evaluate the influence of
different parameters to it.

Varying k. We vary security parameter k with 10, 20, and
30 keeping other parameters fixed on different size of datasets.
Fig. 6 shows the results, where the size is the worker size and
all the data measure the average cost for one task. The search
time is greatly influenced by k. The search process needs to
search through the inverted index. Larger k means more fake
points are generated and inserted into the inverted index.
First, it makes the index larger and slow down the searching
process. Second, more fake points means larger candidate
workers should be sorted before sending to task client, which
also cost much time during the whole process. So the smallest
setting k=10 leads to lowest time cost less than 0.1s for the
largest data size, while the most secure setting k=30 costs
about 0.5s. We get the similar trend on both the Foursquare
Dataset and the Yelp Dataset.

Varying hash function number. Another parameter that
might influence the searching efficiency is hash function
number h. However, as shown in Figs. 7, the influence of
h is much smaller than the influence of k. We can see that the
largest h = 10 result in a highest time cost on Yelp Dataset,
but the difference between different h becomes negligible on
other results - although larger hash function number will set
more bits to 1 in the Bloom index entry and increase the data
stored in inverted index. Detailed analysis show us the reason
– It does not affect the candidate size to be sorted, but the
cost of searching through inverted index is much smaller than
sorting candidates.

8 Conclusion
We design a framework for private-preserving spatial crowd-
sourcing, through which the SC-server can assign a location-
based task to nearest workers without knowing the exact
location of workers and tasks. It protects both the worker loca-
tions and task locations without online TTP. The framework
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consists of a grid-based location encryption method and an
indexing method. We analyze the security of our framework.
The existence of efficiency-security trade-off shows that it
is hard to get high efficiency with high-secure protection.
Experiment results our solution can efficiently deal with large
scale dataset.

There are some open problems in our work. First, the
method focuses on online scenario and produces matches for
tasks one by one. It is not efficient enough in batch scenario.
Second, the method is hard to defend attacks when there is
collusion between SC platform and task requesters. We will
try to solve these problems in the future.
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