
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021 1795

SAP-SSE: Protecting Search Patterns and Access
Patterns in Searchable Symmetric Encryption

Qiyang Song , Zhuotao Liu , Jiahao Cao , Kun Sun , Member, IEEE, Qi Li , Senior Member, IEEE,

and Cong Wang , Senior Member, IEEE

Abstract— Searchable symmetric encryption (SSE) enables
users to search over encrypted documents in untrusted clouds
without leaking the search keywords to the clouds. Existing
SSE schemes achieve high search efficiency at the expense of
leaking access patterns and search patterns, where clouds can
recover a large percentage of queried keywords using the leaked
access patterns and search patterns. To prevent clouds from
recovering users’ keywords, researchers have proposed a number
of solutions to protect either search patterns or access patterns.
However, none of them can protect both access patterns and
search patterns. Moreover, existing SSE schemes cannot work in
the generic database setting that allows multiple users to write
or read over encrypted documents. In this paper, we propose an
efficient searchable symmetric encryption scheme, called SAP-
SSE, which protects both access patterns and search patterns in
the generic database setting. The main idea of protecting search
patterns is to leverage re-encryption cryptosystems to shuffle
index entries over multiple clouds. To protect access patterns,
we distribute secure indexes to multiple clouds and then propose
an index redistribution protocol that allows users to renew index
entries in clouds. Furthermore, SAP-SSE provides a configurable
security policy to balance security and efficiency. Formal security
analysis and experimental evaluation show that SAP-SSE can
prevent pattern leakage with low overhead.

Index Terms— Searchable symmetric encryption, access pat-
tern leakage, search pattern leakage.

Manuscript received March 17, 2020; revised August 3, 2020 and
October 17, 2020; accepted November 6, 2020. Date of publication
December 2, 2020; date of current version January 5, 2021. This work
was supported in part by the National Key Research and Development
Program of China under Grant 2018YFB1800304; in part by NSFC under
Grant 61572278; in part by the U.S. ONR Grant N00014-16-1-3214 and
Grant N00014-18-2893; in part by the U.S. ARO Grant W911NF-17-1-
0447; and in part by the Research Grants Council of Hong Kong under
Grant CityU 11217819 and Grant CityU 11217620. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Vanesa Daza. (Corresponding author: Qi Li.)

Qiyang Song is with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China, also with the Beijing National
Research Center for Information Science and Technology, Beijing 100084,
China, and also with the Department of Information Sciences and Tech-
nology, George Mason University, Fairfax, VA 22030-4422 USA (e-mail:
songqy17@tsinghua.org.cn).

Zhuotao Liu, Jiahao Cao, and Qi Li are with the Institute for Network
Sciences and Cyberspace, Tsinghua University, Beijing 100084, China,
and also with the Beijing National Research Center for Information Sci-
ence and Technology, Beijing 100084, China (e-mail: zliu48@illinois.edu;
caojh15@mails.tsinghua.edu.cn; qli01@tsinghua.edu.cn).

Kun Sun is with the Department of Information Sciences and Tech-
nology, George Mason University, Fairfax, VA 22030-4422 USA (e-mail:
ksun3@gmu.edu).

Cong Wang is with the Department of Computer Science, City University
of Hong Kong, Hong Kong (e-mail: congwang@cityu.edu.hk).

Digital Object Identifier 10.1109/TIFS.2020.3042058

I. INTRODUCTION

CLOUD storage is an outsourcing service for stor-
ing explosively growing personal and enterprise data.

Recently, the emerging events of data breaches [1] have
raised severe privacy concerns for cloud data. Searchable
encryption [2] provides a solution to protect private data and
search keywords while enabling search functionality. Ideally,
searchable encryption can be achieved with a high-security
guarantee via oblivious RAM (ORAM) [3]. However, this
mechanism has not been widely deployed due to frequent
interactions and high communication overhead. To protect
data privacy without sacrificing efficiency and searchability,
researchers have proposed Searchable Symmetric Encryption
(SSE) [4]–[11] to enable clients to perform keyword searches
over encrypted documents without leaking search keywords.

The existing SSE schemes (e.g., [4]–[11]) gain efficiency
at the expense of some leakage. Typically, SSE leakage
consists of access patterns and search patterns. Access patterns
reveal the relationship between search operations and matched
documents, and search patterns reveal which search operations
link to the same keyword. Although those SSE schemes
have proven adaptive security [4], recent work shows the
semi-honest cloud can still recover encrypted search key-
words [12]–[15]. By exploiting search patterns [12], the cloud
can infer keywords from user search habits. By exploiting
access patterns [13]–[15], the cloud can utilize the prior
knowledge of documents to derive keywords. Particularly,
Zhang et al. [15] propose a file-injection attack, achieving
70% keyword recovery accuracy with 20% prior knowledge
of documents.

To reduce the risk of keyword disclosures, researchers have
proposed several SSE schemes [16]–[20] to minimize the
leakage of access patterns and search patterns. None of them
can protect access patterns and search patterns simultaneously.
However, it is critical to protect the two types of patterns since
they are correlated. Namely, when one is leaked, an adversary
can derive the information of the other one. For instance,
if search patterns are protected, but access patterns are leaked,
the cloud can still infer the search patterns of some keywords.
This is because a specific keyword may be related to unique
documents. When the cloud observes some search operations
matching the unique documents, these search operations can
be considered to link the same keyword. If access patterns are
protected, but search patterns are leaked, the cloud can utilize
search habits to recover some keywords. As prior knowledge
of documents may show the relationship between specific

1556-6021 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1596-3331
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0001-7139-376X
https://orcid.org/0000-0003-4152-2107
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-0547-315X

1796 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

keywords and matched documents, the cloud can still infer
these keywords’ access patterns. Therefore, protecting only
one pattern type is insufficient to reduce SSE leakage.

Another limitation of existing SSE schemes is that they
can only protect access patterns or search patterns in static
databases, where only a single user can read over encrypted
documents. However, a generic database should allow multiple
users to write and read over encrypted documents. The generic
database should be further studied as the cloud can infer more
sensitive information by observing update operations from
specific users [21]. Although we can apply forward-secure
SSE schemes [6], [7] to reduce information leakage in update
operations, they still reveal update frequency of keywords,
which may be used as a stepstone to derive access patterns or
search patterns. Therefore, it is critical to design new update
operations without leaking patterns. However, supporting the
multi-user setting, a prerequisite of generic databases, can not
be trivially done by extending existing SSE schemes to protect
patterns. Specifically, the multi-user setting [11] requires users
to hold distinct keys that could be easily managed, whereas
the existing SSE schemes [16], [17] only allow a single user
with a key to generate search tokens and hide search patterns.
Therefore, a new stack of search operations is required to
enable pattern protection for multiple users with distinct keys.

In this paper, we propose an efficient searchable symmet-
ric encryption scheme, called SAP-SSE, which can protect
access patterns and search patterns simultaneously in generic
databases. Similar to prior work, SAP-SSE adopts encrypted
secure index [22] to achieve sublinear search complexity.
To protect access patterns and search patterns, we design an
index shuffle protocol and an index redistribution protocol that
periodically transform the contents, ciphertexts, and locations
of index entries in multiple non-colluding clouds. As a result,
each cloud will observe a new view of search tokens and
search results. Therefore, neither of the clouds can derive
search patterns and access patterns.

Within our index shuffle protocol, each cloud leverages
re-encryption cryptosystems [23], [24] to re-encrypt index
entries with a secret key and then makes a random permu-
tation. Note that search tokens are bound with index entries.
Therefore, clouds will observe new search tokens after the
process of index shuffle. As the re-encryption cryptosystems
do not reveal the plaintexts of index entries and search tokens,
each cloud cannot correlate new search tokens to previous
ones until it corrupts all other clouds. Therefore, clouds cannot
derive search patterns from search tokens.

Our index redistribution protocol’s key insight is to divide
the original document index between multiple clouds and then
rewrite the divided parts after search operations. Afterward,
each cloud will observe new search results. To prevent clouds
from inferring the relationship between the new results and
previous ones by correlating index entries, we also apply the
index shuffle protocol to shuffle the rewritten index entries.
As a result, clouds cannot derive access patterns from search
results.

Based on the above protocols, we design the search and
update operations that support pattern protection in generic
databases. The critical component of search and update

operations is a re-encryption cryptosystem. It allows users
to efficiently generate search/update tokens consistent with
the currently re-encrypted index entries. Then clouds can
transform the tokens and directly use them to query or
update indices. As the tokens are not linkable with historical
tokens, clouds cannot derive search patterns from these tokens.
Moreover, our update operations apply additive homomorphic
encryption [25] to merge incremental indices into the original
index entry without exposing plaintexts. Therefore, the update
frequency of keywords remains unchanged, preventing the
possible leakage of update frequency.

Furthermore, we provide an adjustable security policy to
balance security and efficiency. The strictest security policy is
to execute the index shuffle protocol after each search opera-
tion. It is similar to multi-cloud ORAM [26], but with higher
efficiency, since it only incurs inter-cloud interactions while
multi-cloud ORAM incurs additional frequent client-cloud
interactions. Although the inter-cloud interaction overhead
is still high, the adjustable security policy allows users to
make a trade-off between security and efficiency. In most
cases, applications prefer sacrificing non-sensitive information
to gain high efficiency, and recent work [12]–[15] shows a
small amount of pattern leakage does not breach keyword
privacy. Thus, our security policy can satisfy the practical
requirements of efficiency and security.

We formulate the security of SAP-SSE and prove the secu-
rity in the aspects of confidentiality, query unforgeability, and
shuffle indistinguishability. Moreover, we conduct experiments
to evaluate the security and performance of SAP-SSE. The
experimental results demonstrate that SAP-SSE can effectively
prevent the keyword recovery attacks with small overhead.

We list the comparison with prior work on several key
properties in Table I. To our best knowledge, our scheme is the
first SSE scheme that provides optimal protection on patterns
while supporting generic databases. Crucially, our scheme
achieves these properties with comparable computation and
communication complexity (see details in Section IV-H).

In summary, we make the following contributions.
• We propose an efficient SSE scheme called SAP-SSE to

protect both access patterns and search patterns in generic
databases.

• We design an index shuffle protocol and an index redis-
tribution protocol to periodically transform cloud-side
indices. Moreover, we provide multi-user search and
update operations supporting pattern protection.

• We provide an adjustable security policy to balance
security and performance. This policy allows users to
quantitatively customize the parameters in the index shuf-
fle process.

• We conduct a security analysis and experiments to
demonstrate the security and performance of SAP-SSE.
The results indicate that SAP-SSE can prevent the leakage
of access patterns and search patterns with low overhead.

II. BACKGROUND

A. Secure Index
Most SSE schemes utilize a secure index to provide efficient

search operations. A secure index is an encrypted inverted

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1797

TABLE I

COMPARISON WITH PRIOR WORK ON KEY PROPERTIES

index that records the relationship between keywords and
matched document IDs. It consists of token field and ID field,
where the token field is the pseudo-random string generated
from keywords, and the ID field is the ciphertext of document
IDs. When users search a keyword, they only need to generate
a search token, and then clouds can find and decrypt the
ciphertext of matched document IDs with the token.

B. Symmetric Searchable Encryption

Researchers have proposed a variety of SSE schemes
[4]–[11] to enable clouds to search over encrypted documents.
Particularly, the state of the art can work in the setting of
generic databases, which allow multiple users to write and read
over encrypted documents. It can be abstracted six algorithms
as follows:
• Setup(1k): is run by a system manager. It takes as input

a security parameter k and outputs global parameters P .
• AddUser(u, P): is run by a system manager. It takes as

input a user identity u and a global parameters P , and
outputs a secret user key sku .

• UpdToken(f , sku): is run by a user. It takes as input a
file f and a user key sku , and outputs update tokens α f .

• Upd(α f , π , D): is run by the cloud. It takes as input
update tokens α f , a secure index π , and a document
collection D, and outputs a new index π ′ and a document
collection D′.

• SrchToken(w, sku): is run by a user. It takes as input a
keyword w and a secret user key sku , and outputs a search
token σw for searching.

• Srch(σw, π , D): is run by the cloud. It takes as input
a search token σw, a secure index π , and a document
collection D, and outputs the matched documents D(w).

C. Pattern Leakage

To clarity what leakage we aim to protect, we formulate
access patterns and search patterns. Let Q be a q-query set
whose element is in the form of pair (i, w), where i denotes the
timestamp of a query, and w denotes a keyword. The leakage
can be represented as follows:

• Access pattern. It reveals which documents contain a
certain keyword. For each queried keyword w, its access
pattern is defined as ap(w) = {I D(w)}, where I D(w)
denotes the IDs of documents containing w.

• Search pattern. It reveals which queries link to a certain
keyword. For each queried keyword w, its search pattern
is defined as sp(w) = {i |(i, w) ∈ Q}.

D. Proxy Re-Encryption

Proxy re-encryption [23] enables an untrusted proxy to
transform a message encrypted by Alice to a new message
that can be decrypted by Bob without exposing plaintexts.
The cryptosystem is one cornerstone of our index shuffle
protocol. It enables clouds to convert the token fields of
index entries without revealing keyword plaintexts. A proxy
re-encryption cryptosystem can be presented as follows:
• KeyGen(1k): takes as input a security parameter k, and

outputs a key pair (pku, sku).
• Enc(m, pku): takes as input a plaintext m and a public

key pku , and outputs a ciphertext Cu .
• Dec(Cu, sku): takes as input a ciphertext Cu and a secret

key sku , and outputs a plaintext m.
• ProxyKeyGen(sku1, sku2): takes as input two secret keys

sku1 and sku2 , and outputs a re-encryption key pku1→u2 .
• Re-Enc(Cu1, pku1→u2): takes as input a ciphertext Cu1

encrypted under sku1 and a re-encryption key pku1→u2 ,
and outputs a ciphertext Cu2 that can be decrypted
by sku2 .

E. Universal Re-Encryption

Universal re-encryption [24] empowers an untrusted proxy
to re-randomize a ciphertext to another ciphertext without
revealing plaintexts. Unlike proxy re-encryption, universal
re-encryption does not change the decryption keys of cipher-
texts. It only converts the form of ciphertexts. With univer-
sal re-encryption, clouds can re-randomize ID fields without
revealing ID plaintexts. A typical universal re-encryption

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

1798 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

scheme is implemented by additive homomorphic encryp-
tion [25]. It can be presented as follows:

• KeyGen(1k): takes as input a security parameter k, and
outputs a key pair (pku, sku).

• Enc(m, pku, r): takes as input a plaintext m, a public key
pku , and a random number r , and outputs a ciphertext Cr

u .
• Dec(Cr

u, sku): takes as input a ciphertext Cr
u and a secret

key sku , and outputs a plaintext m.
• Re-Enc(Cr

u, pku, r ′): takes as input a ciphertext Cr
u ,

a public key pku , and a random number r ′, and outputs
a new ciphertext Cr ′

u .

III. SAP-SSE OVERVIEW

In this section, we present the system overview of SAP-
SSE. We articulate the capabilities of adversaries, our design
goals, and the system model.

A. Threat Model and Assumptions

In this paper, we consider multiple untrusted clouds that
provide searchable encryption. We assume that the clouds are
honest-but-curious [4], [5]. Namely, they follow the prede-
fined protocols faithfully but have interests to infer sensitive
information from the interactions between clouds and users.
Particularly, the clouds may attempt to learn sensitive informa-
tion from encrypted documents. Moreover, they may strive to
recover encrypted search keywords according to the leakage of
access patterns and search patterns. We assume the clouds are
computationally bounded, which means they cannot dedicate
infinite computation resources to derive sensitive information.

Meanwhile, we assume that cloud providers do not collude
with each other. This assumption is reasonable since different
cloud providers are distinct business entities and even direct
competitors. Disclosing user data to other entities is a direct
violation of many cloud providers’ security policies [27].
Moreover, there exist some solutions [28] that enforce the law
and economical means to prevent collusions between clouds.
In practice, this non-colluding model has been adopted in
a wide range of cloud applications, e.g., secure multi-party
computation [29] and multi-cloud storage [26].

B. Design Goals

We aim to design an efficient SSE scheme that can simulta-
neously protect access patterns and search patterns in generic
databases. Particularly, it should satisfy the following security
and efficiency requirements:

1) Confidentiality: Similar to prior work, SAP-SSE pre-
vents clouds from deriving the plaintexts of documents
and keywords from encrypted documents and search
tokens. Furthermore, SAP-SSE provides an adjustable
security policy to thwart the leakage of access and search
patterns.

2) Efficiency: SAP-SSE achieves sublinear search complex-
ity that is less than O(m), where m is the number of
keywords. Moreover, SAP-SSE provides a configurable
security policy that allows users to adjust the level of
efficiency according to practical security requirements.

Fig. 1. System architecture.

3) Query Unforgeability: SAP-SSE ensures that unautho-
rized parties cannot forge an honest user’s search tokens
and update tokens unless they obtain the user’s secret
key.

C. System Model

Figure 1 shows the architecture of SAP-SSE, which allows
multiple users to search and update over encrypted documents.
SAP-SSE consists of three parties: (i) a group of authorized
users, who can execute search and update operations over
encrypted documents; (ii) user management center, which is
in charge of user management; (iii) a set of clouds, which
store encrypted documents and also provide search and update
operations supporting pattern protection. For simplicity, we use
two clouds S1 and S2 to present the system; however, our
system can be extended to more than two clouds.

The key insight of protecting access and search patterns is to
construct secure indices that can be shuffled and redistributed
between S1 and S2. As Figure 2 shows, secure indices consist
of token field and ID field, which are the ciphertexts of
keywords and ID bitmaps. Here, ID bitmaps are n-bit strings
that record the IDs of documents containing specific keywords.
To protect access patterns, we split the original index into
two indices and encrypt them in S1 and S2. As the ID fields
of the two indices are generated from two split ID bitmaps,
users can rewrite ID fields in each cloud to renew the view
of search results. Consequently, clouds cannot derive access
patterns from search results. In addition, as the token field
and ID field are encrypted by re-encryption cryptosystems,
each cloud can re-encrypt index entries and permutate them
to transform the ciphertexts and locations of index entries. As a
result, the corresponding search tokens will be changed, and
thus clouds cannot derive search patterns.

Overall, SAP-SSE consists of six main phases: Setup,
Authorization, Index Shuffle, Index Redistribution, Search, and
Update. We walk through all phases to provide a brief view
on the entire workflow.

1) Setup: The user management center chooses a security
parameter and then initializes public parameters and master
keys. Then, the public parameters are broadcast to clouds, and
the master keys are used to authorize users.

2) Authorization: First, a user selects a random number
as its secret key for update and search operations. Second,

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1799

Fig. 2. Index construction. PRE: proxy re-encryption cryptosystem; URE:
universal re-encryption cryptosystem.

Fig. 3. Index shuffle.

the user management center computes an authorization key
according to the user’s secret key and then adds the authoriza-
tion key into clouds. Third, the user management center sends
a file key and public parameters to the user.

3) Index Shuffle: Figure 3 shows the index shuffle pro-
tocol. As the token field and ID field of index entries are
encrypted by a proxy re-encryption scheme and universal
re-encryption scheme, respectively. Therefore, each cloud can
transform index entries via re-encryption operations and make
a random permutation. As clouds use different shuffle numbers
sn1 and sn2 to re-encrypt index entries, no single cloud can
identify the relationship between shuffled index entries and
previous ones. As search tokens are bound with token fields,
they will be changed when token fields are re-encrypted. As a
result, clouds cannot infer search patterns by observing search
tokens.

4) Index Redistribution: Figure 4 shows the index redistri-
bution protocol after a search operation. First, a user merges
the search results from S1 and S2 and then splits the document
IDs into two parts. Second, it generates two ID bitmaps and
encrypts them according to the two parts. Then, it sends them
to replace the ciphertexts of ID fields in S1 and S2. Afterward,
each cloud will observe new search results. To prevent clouds

Fig. 4. Index redistribution.

from correlating the new results from the previous results
by observing index entries, we also utilize the index shuffle
protocol to transform the locations and ciphertexts of index
entries. As a result, clouds cannot derive search patterns.

5) Search: A search operation involves a user and two
clouds, and it can be divided into the two stages of search
token generation and searching documents in clouds. In the
first stage, the user generates the newest search token consis-
tent with currently shuffled index entries, preventing clouds
from deriving search patterns. In the second stage, each cloud
finds an index entry according to the search token and then
extracts an ID field. Next, each cloud obtains a unique set
of document IDs via decryption. As each cloud not only
stores an encrypted index but also stores encrypted documents,
it can directly return a unique set of documents according
to observed IDs. Here, we emphasize that each cloud should
not decrypt ID fields by itself, since otherwise clouds would
learn access patterns of all keywords via decryption. Therefore,
we design a new decryption mechanism that can only decrypt
ID fields when two clouds are simultaneously involved in
search operations.

6) Update: As Figure 2 shows, the original index is
decomposed and encrypted in S1 and S2. Therefore, update
operations should refresh both indices in S1 and S2. During
an update operation, a user extracts an inverted index from
its documents and randomly divides it into two parts. Then,
the user generates two sets of update tokens and encrypts
documents with a file key. Next, the encrypted documents
are sent to all clouds, and the two sets of update tokens are
sent to S1 and S2, respectively. Finally, each cloud updates its
secure index with a set of update tokens and inserts encrypted
documents into a document collection. Besides, since the
update operations may be exploited by the clouds to infer
search patterns when they reveal update frequency or do not
possess forward security [15], we design a secure update
mechanism to hide the leakage of search patterns (see details
in Section IV-G).

IV. SAP-SSE CONSTRUCTION

In this section, we firstly present two re-encryption cryp-
tosystems that are tailored for SAP-SSE construction. We then

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

1800 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

detail six designed protocols. Next, we compare our con-
struction with existing constructions. Finally, we show how
to extend SAP-SSE to support multiple clouds.

A. Tailored Re-Encryption Cryptosystems

In SAP-SSE, our index shuffle protocol is based on a proxy
re-encryption cryptosystem [23] and a universal re-encryption
cryptosystem [24] to transform the token fields and ID fields of
index entries. Since token fields are essentially pseudorandom
strings used for searching, we do not need a decryption algo-
rithm. Therefore, to gain high efficiency, we tailor the proxy
re-encryption cryptosystem to a lightweight proxy pseudoran-
dom function. As we aforementioned, to prevent the leakage of
access patterns, we should not allow ID fields to be arbitrarily
decrypted by a cloud. Therefore, we tailor the decryption
algorithm of the universal re-encryption cryptosystem.

1) Tailored Proxy Pseudorandom Function (TPF): Our
proxy pseudorandom function TPF is based on the one-way
encryption algorithm [23]. It is a suite of four algorithms
TPF = (KeyGen, Rnd, RecKeyGen, Rec). Let G be a q-order
finite group and HG be a pseudorandom generation: {0, 1}∗ →
G. The proxy pseudorandom function is presented as follows:
• KeyGen(1k): is a probabilistic algorithm to generate a

secret key. It takes as input a security parameter k, and
outputs a random number pk ∈ Zq as a secret key.

• Rnd(m, pk): is an algorithm to randomize a message.
It takes as input a message m and a secret key pk,
and computes ps = HG(m)pk . Then, it outputs ps as
a pseudorandom string.

• RecKeyGen(pk1, pk2): is an algorithm to generate a
re-encryption key. It takes as input two pseudorandom
keys pk1 and pk2, and computes r pk1→2 = pk2/pk1.
Then, it outputs r pk1→2 as a re-encryption key.

• ReEnc(ps1, r pk1→2): is an algorithm to re-encrypt a
pseudorandom string. It takes as input a pseudorandom
string ps1 and a re-encryption key r pk1→2, and computes
ps2 = psrpk1→2

1 . Then, it outputs ps2 as a re-encrypted
pseudorandom string.

2) Tailored Universal Re-Encryption (TUR): Our universal
re-encryption cryptosystem TUR is based on an additive
homomorphic cryptosystem Paillier = (KeyGen, Enc, Dec,
Add) [25]. To prevent either cloud from decrypting ID fields
of index entries by itself, we tailor the decryption algorithm
of Paillier to a two-step decryption algorithm. Our universal
re-encryption cryptosystem is a suite of six algorithms TUR =
(Setup, KeyGen, Enc, ReEnc, PDec, Dec). It works as follows:
• Setup(1k): is a probabilistic algorithm to initialize a

master key pair. It takes as input a security parameter
k and runs Paillier.KeyGen(1k) to output a secret key λ
and a public key n. Then, it outputs (λ, n) as a master
key pair.

• KeyGen(λ): is an algorithm to generate two partial
decryption keys for two parties. It takes as input a master
secret key λ and splits λ to two shares sk1 and sk2. Then,
it outputs sk1 and sk2 as partial decryption keys.

• Enc(m, n): is an algorithm to encrypt a plaintext. It takes
as input a plaintext m and a master public key n, and
runs Paillier.Enc(m, n) to output a ciphertext c.

• ReEnc(c, n): is an algorithm to re-encrypt a ciphertext.
It takes as input a ciphertext c and a master public key n,
and computes c′ = c∗ Pailler.Enc(0, n). Then, it outputs
c′ as a re-encrypted ciphertext.

• PDec(c, ski): is an algorithm to partially decrypt a
ciphertext. It takes as input a ciphertext c and a secret
key ski , and computes ci = cski . Then, it outputs ci as a
partially decrypted ciphertext.

• Dec(ci , sk j): is an algorithm to decrypt a ciphertext.
It takes a partially decrypted ciphertext ci and a secret key
sk j , and runs Paillier.Dec(ci , sk j) to output a plaintext m.

B. System Setup

In the system setup phase, the user management center
needs to initialize global parameters according to a security
parameter k. First, it runs the algorithm TPF.KeyGen(1k) and
TUR.Setup(1k) to generate three master keys KM , skM

I D , and
pkM

I D , where KM is the generation key of token fields, skM
I D

is the decryption key of ID fields, and pkM
I D is the encryption

key of ID fields. Then, the user management center publishes
pkM

I D to all clouds.
Second, the user management center executes the algorithm

TUR.KeyGen(skM
I D) to generate two partial decryption keys

sk1
I D and sk2

I D , and randomly selects two random numbers
sn1 and sn2 as shuffle numbers. Then, it sends sk1

I D with sn1
to cloud S1 and sends sk2

I D with sn2 to cloud S2, respectively.
With the shuffle numbers, the clouds can re-encrypt index
entries during the process of index shuffle.

Finally, the user management center selects two random
numbers K f and KT as a file key and a tag key. The file
key is applied to encrypt and decrypt files, and the tag key
is used to generate the tags that represent the status of index
entries being shuffled.

C. User Authorization

As a user’s search tokens and update tokens are generated
from a secret key sku , they cannot be applied to match the
token fields that are encrypted under a master token key KM .
To enable searching and updating, we let clouds re-encrypt
search and update tokens to master tokens consistent with
token fields. Therefore, user authorization is the process of
distributing a re-encryption key into clouds, and authorization
keys are essentially re-encryption keys. When the user man-
agement center receives a user key sku , it runs the algorithm
TPF.RecKeyGen(sku, KM) to output an authorization key and
then delivers it to clouds. Besides, the user management center
sends the file key K f , the tag key KT , the shuffle numbers sn1
and sn2, and the ID encryption key pkM

I D to the user. With
K f , the user can encrypt and decrypt documents. With the
user key, KT , and pk M

I D , the user can generate update tokens
to update documents. With sn1, sn2, and a user key, the user
can generate search tokens to retrieve documents.

D. Index Shuffle

To protect search patterns, we leverage our proxy pseudo-
random function and universal re-encryption to design an

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1801

Algorithm 1: Shuffle Index Entries in Si

Input: our universal re-encryption cryptosystem TUR,
our proxy pseudorandom function TPF,
a pseudorandom function H1: {0, 1}∗ × {0, 1}∗
→ {0, 1}k , a set I Ei of index entries stored in Si ,
two shuffle numbers sn1 and sn2, and a bloom
filter B Fi .

Output: a set I E ′i of newly shuffled index entries.
1 Cloud Si:
2 sends to I Ei to Sj ;
3 Cloud Sj:
4 T I E ← ∅;
5 for each (γ, κi , tagi

w) ∈ I Ei do
6 γ ′ ← TPF.ReEnc(γ , sn j);
7 κ ′i ← TUR.ReEnc(κi , pk M

I D);
8 tagi

w
′ ← H1(tagi

w, sn j);
9 T I E .insert(γ ′, κ ′i , tagi

w
′
);

10 randomly permutates T I E , then sends T I E to Si ;
11 Cloud Si:
12 I E ′i ← ∅;
13 for each (γ ′, κ ′i , tagi

w
′
) ∈ T I E do

14 γ ′′ ← TPF.ReEnc(γ ′, sni);
15 κ ′′i ← TUR.ReEnc(κ ′i , pk M

I D);
16 tagi

w
′′ ← H1(tagi

w
′
, sni);

17 B Fi .insert(tagi
w
′′
), I E ′i .insert(γ ′′, κ ′′i , tagi

w
′′
);

18 randomly permutates I E ′i ;
19 return I E ′i ;

index shuffle protocol. To balance security and efficiency,
we also present a quantitative method to evaluate pattern
leakage and then provide an adjustable security policy.

1) Two-Cloud Index Shuffle: As the original index is decom-
posed and encrypted to π1 and π2 in two clouds, the entire
index shuffle protocol consists of two subroutines that shuffle
π1 and π2. Here, we present Algorithm 1 to show the sub-
routine that shuffles πi . It is collaboratively executed by S1
and S2. First, each cloud re-encrypts token fields using proxy
re-encryption and re-randomizes ID fields using universal re-
encryption. Second, each cloud randomly permutates index
entries to hide the locations of index entries. Since each cloud
uses secret shuffle numbers to re-encrypt index entries, neither
of the clouds can correlate the shuffled index entries to the
original ones. As search tokens are bound with index entries,
they will be changed after an index shuffle process. Thus,
clouds cannot derive search patterns from search tokens.

To help users generate the new search tokens consistent with
currently shuffled index entries, we add tags into index entries
to reveal shuffle status. In each index shuffle process, S1 and
S2 re-randomize the tags via a pseudorandom function H1,
and then insert new tags into bloom filters. Therefore, users
can simply query bloom filters to learn shuffle status.

2) Leakage Quantification: Intuitively, the access pattern
leakage L AP can be indicated by the number of queried key-
words. To quantify the search pattern leakage LS P , we need
to consider the statistics of search patterns. We notice that
clouds can exploit the search frequency of keywords over time,

i.e., search frequency vectors, to infer keywords from search
patterns [12]. If the search frequency vector of a keyword is
more diverged from others, clouds can more accurately recover
the keyword. Therefore, we can utilize the divergence of search
frequency vectors to quantify LS P . Similar to Liu et al. [12],
we measure the divergence between two frequency vectors
with Euclidean Distance. Therefore, LS P can be quantified as
follows:

LS P = 1

|Q|2
∑

i∈Q

∑

j∈Q

| f vi − f v j |, (1)

where Q is a q-query set, and f vi is the search frequency
vector of a keyword over time. In conclusion, pattern leakage
can be formulated as a tuple P L = (L AP , LS P).

3) Shuffle Policy: The strictest security policy to protect
access patterns and search patterns is to shuffle entire index
entries after each search operation. However, this security
policy is time-consuming. Therefore, we provide an adjusted
security policy that allows users to balance security and effi-
ciency. The security policy includes two user-defined leakage
thresholds (TAP , TS P), where TAP is the maximum allowable
amount of L AP , and TS P is the maximum allowable amount
of LS P . If the quantified amount of L AP or LS P reaches
the threshold TAP or TS P , then clouds start the index shuf-
fle protocol to shuffle the entire index entries. In practice,
the value of L AP and LS P is related to the number of leaked
keywords. Therefore, it is possible to conduct experiments
on practical datasets to measure this relationship and then
define appropriate leakage thresholds in their security policy
(see Figure 5.(b) and 5.(c)).

E. Index Redistribution

The index redistribution protocol works after each search
operation to re-scatter index entries of a keyword. First, a user
merges the search results from two clouds and then randomly
re-splits them into two parts. Second, the user records the two
parts into ID bitmaps and generates new ID fields according to
ID bitmaps. Third, the new fields are sent to clouds to replace
the old ones. Afterward, each cloud can observe new search
results. To prevent each cloud from correlating the new search
results to the old ones, we let clouds cache the new index
entries and re-encrypt them in the next index shuffle process.

F. Search Operations

1) Shuffle Status Query: As index entries may be shuffled
many times, users should query the shuffle status of index
entries to generate search tokens. In each index entry, we add
a tag to reveal its shuffle status. During the k-th shuffle process,
the tag tagk in cloud Si is refreshed to a new tag as follows:

tagk+1 = H1(H1(tagk, sn j), sni). (2)

The tag essentially reveals the numbers of an index entry
being shuffled. Since the tags are recorded in the bloom filters
B F1 and B F2, users can retrieve either one to query an index
entry’s shuffle status. To query the shuffle status of an index
entry, a user needs to generate a set of corresponding tags
{tag0, tag1, · · · } with shuffle numbers and test which ones

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

1802 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Algorithm 2: Search Token Generation
Input: a user secret key sku , a keyword w, the shuffle

status xw of the index entry related to w, two
random shuffle numbers sn1 and sn2, and our
proxy pseudorandom function TPF.

Output: a search token σw.
1 t = sku ∗ (sn1 ∗ sn2)

xw ;
2 σw ← TPF.Rnd(w, t);
3 return σw;

Algorithm 3: Search Documents in Si

Input: a search token σw, the secure index π j stored in
Sj , the document collection Ci stored in Si , two
partial decryption keys sk1

I D and sk2
I D of ID

fields, an authorization key r pku→M , our proxy
pseudorandom function TPF, and our universal
re-encryption cryptosystem TUR.

Output: a set Ci (w) of encrypted documents.
1 Cloud Sj:

2 σ M
w ← TPF.ReEnc(σw, r pku→M);

3 κ j ← π j .find(σ M
w);

4 κ ′j ← TUR.PDec(κ j , sk j
I D);

5 sends κ ′j to Si ;
6 Cloud Si:
7 bm ← TUR.Dec(κ ′j , ski

I D);
8 finds Ci (w) according to the bitmap bm;
9 return Ci (w);

are contained in B Fi . If tagk is found in B Fi and tagk+1 is
not found in B Fi , then we can conclude that the shuffle status
is k+ 1, which means the index entry has been shuffled k+ 1
times. Particularly, the status ‘0’ represents that the index entry
is newly inserted into secure indices and has not been shuffled.
With the shuffle status, the user can generate the search tokens
consistent with currently shuffled index entries.

2) Search Token Generation: When index entries are shuf-
fled xw times, the key of their token fields is transformed
from the original value K to the new value K ∗ (sn1 ∗ sn2)

xw ,
where sn1 and sn2 are shuffle numbers. Therefore, to enable
search operations, we need to generate search tokens consistent
with currently shuffled index entries. Algorithm 2 shows the
detailed operation of search token generation. It generates
the search token of a keyword according to a user key
sku , the shuffle status xw, and the shuffle numbers sn1 and
sn2. Essentially, the key of the generated search token is
sku ∗ (sn1 ∗ sn2)

xw . By re-encrypting it with the authorization
key K/sku , clouds can transform the key to K ∗ (sn1 ∗ sn2)

xw ,
which is identical to the key of token fields. Therefore, clouds
can directly use the search token to query the post-shuffled
index entries.

3) Searching Documents: As Si and Sj store two different
index entries, the searching process consists of two different
sub-processes in Si and Sj . To prevent a single cloud from
arbitrarily decrypting all ID fields to infer access patterns,
we apply the two-step decryption algorithm of our univer-
sal re-encryption cryptosystem into each sub-process. As a

Algorithm 4: Update Token Generation
Input: a user secret key sku , a file f , a set {xwi |wi ∈ f

} of the index shuffle statuses related to the
keywords contained in f , a tag key KT , a proxy
pseudorandom H1: {0, 1}∗ × {0, 1}∗ → {0, 1}k ,
a secret permutation function Pk , two shuffle
numbers sn1 and sn2, our proxy pseudorandom
function TPF, and our universal re-encryption
cryptosystem TUR.

Output: two sets α1
f and α2

f of update tokens.
1 α1

f ← ∅, α2
f ← ∅, bm1← {0}l , bm2← {0}l ;

2 for each w ∈ f do

3 i
$←− {1, 2}, bmi [I D(f)] ← 1;

4 γ ← TPF.Rnd(wi , sku);
5 κ1 ← TUR.Enc(P K M

I D , bm1);
6 κ2 ← TUR.Enc(P K M

I D , bm2);
7 tag1

w, tag2
w ← H1(KT , w);

8 if xw > 0 then
9 for i ∈ {0, · · · , xw − 1} do

10 tag1
w ← H1(H1(tag1

w, sn2), sn1);
11 tag2

w ← H1(H1(tag2
w, sn1), sn2);

12 pos1 ← Pk(tag1
w), pos2 ← Pk(tag2

w);
13 α1

f .insert(pos1, κ1, ⊥), α2
f .insert(pos2, κ2, ⊥);

14 else
15 α1

f .insert(γ , κ1, tag1
w), α2

f .insert(γ , κ2, tag2
w);

16 return α
f

1 , α
f

2 ;

result, Si cannot find and decrypt the corresponding document
IDs without the assist of Sj . Algorithm 3 shows a detailed
searching sub-process in Sj . When receiving a search token,
Sj re-encrypts it to a master token with the corresponding
authorization key and finds an index entry with the master
token. Then, Sj partially decrypts the ID field and sends it to
Si . Next, Si fully decrypts the ID field and extracts document
IDs. Finally, Si accordingly finds encrypted documents and
returns them to a user. The searching sub-process in Sj is
similar. In conclusion, the documents retrieved from S1 and
S2 constitute a complete search result.

G. Update Operations
Note that clouds can recover a large percentage of keywords

in non-forward-secure SSE schemes [15]. Therefore, we let S1
and S2 jointly update two indices to achieve forward security.
An update operation for the index π1 consists of two stages.
S1 firstly permutates the index π1 and sends it to S2, and
then S2 updates the permutated index according to update
tokens. As S1 does not observe update locations, and S2 does
not observe the original index, our update operations achieve
forward security. Moreover, we also apply homomorphic
encryption to add new IDs into ID fields. Therefore, the update
locality of a keyword remains unchanged, preventing the
leakage of update frequency. The details are as follows:

1) Update Token Generation: Algorithm 4 shows the
process of update token generation when a user uploads a
document f . For each keyword w ∈ f , a user initializes two

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1803

Algorithm 5: Update a Document in Si

Input: a set αi
f of update tokens an encrypted document

c, the encrypted document collection Ci stored in
Si , an authorization key r pku→M , the secure
index πi stored in Si , a secret permutation
function Pk , a bloom filter B Fi , our proxy
pseudorandom function TPF, and our universal
re-encryption cryptosystem TUR.

Output: a new secure index π ′i and a new encrypted
document collection C ′i .

1 Cloud Si:
2 d ← {};
3 for (γ, κi , tagi

w) ∈ πi do
4 posi ← Pk(tagi

w) ; // permutate πi

5 d[posi] ← TUR.ReEnc(κi , pk M
I D);

6 sends d to Sj ;
7 Cloud Sj:
8 for (posi , ·) ∈ d do
9 if (posi , κ ′i , ·) ∈ αi

f then
10 d[posi] ← d[posi] ⊕ κ ′i ; // add αi

f \ αnew

11 αi
f .del((posi , κ ′i , ·));

12 else
13 d[posi] ← TUR.ReEnc(d[posi], pk M

I D);

14 sends d , αi
f to Si ;

15 Cloud Si:
16 sets π ′i ← ∅;
17 for (γ, κi , tagi

w) ∈ πi do
18 posi = Pk(tagi

w);
19 π ′i .insert(γ , d[posi], tagi

w);

20 for (γ , κi , tagi
w) ∈ αi

f do
21 γ ← TPF.ReEnc(γ , r pku→M) ; // recover πi

22 π ′i .insert(γ , κi , tagi
w) ; // insert αnew

23 B Fi .insert(tagi
w);

24 C ′i ← Ci .insert(c);
25 return π ′i , C ′i ;

bitmaps and randomly selects one to mark the ID information.
Then, it generates two sets of update tokens by the three
cryptosystems TPF, TUR, and H1. Next, it chooses a secret
permutation function Pk . To conceal the update locations of
index entries, it uses Pk to permutate the original update tokens
and also removes their token fields and tag fields. As the
update tokens of new keywords (xw = 0) are not related to any
location of current index entries, they do not reveal sensitive
information. Therefore, the user does not permutate them and
remove their ID fields and tag fields.

2) Updating Documents: Algorithm 5 shows the process
of updating a document in Si (i ∈ {1, 2}). The process
involves two clouds to jointly update the secure index πi .
First, Si receives a secret permutation function Pk , and Sj

receives update tokens α
f

i . Second, Si permutates its index
entries with Pk , removes the original token fields, universally
re-encrypts ID fields, and then sends the permutated index
to Sj . Third, Sj updates it with the received update tokens via

homomorphic addition. Note that the update tokens αnew of
new keywords do not reveal sensitive information. Therefore,
Sj does not update the permutated index with αnew . It only
updates the permutated index with the update tokens αi

f \αnew .
Additionally, to prevent Si from inferring update positions,
Sj also needs to transform the remaining index entries that
are not updated. Specifically, Sj universally re-encrypts the
ID fields of these index entries and sends the entire index
back to Si . Then, Si recovers the sequence of index entries
using Pk and insert new index entries with αnew .

H. Comparison with Existing Constructions

Table I summarizes the key property comparison with exist-
ing constructions [5], [10], [16], [17], [19], [20]. We can see
that SAP-SSE is the only one scheme that can simultaneously
protect access patterns and search patterns. Below, we provide
a detailed overhead analysis (including both computation and
communication) to demonstrate SAP-SSE’s efficiency.

1) Computation: As SAP-SSE utilizes the secure index to
provide searchable encryption service, it has the sublinear
computation complexity of search operations as the most
efficient SSE schemes [5], [19], [20]. Note that we provide
new update operations that do not change the index locality
corresponding to a keyword. Therefore, a search operation
only requires a user to generate a search token, and then clouds
can find an index entry with only one lookup. Thus, the com-
putation complexity of search operations is optimal, i.e., O(1).
Although SAP-SSE applies a more time-consuming crypto-
graphic primitive than a popular large-scale SSE scheme [5],
its lower search complexity counterbalances this defect.

During an update operation, a user firstly generates update
tokens according to keyword-document pairs, and then clouds
will transform whole m index entries and refresh their indices
with the update tokens. Therefore, the computation complexity
of update operations is O(m). This is not optimal compared
to the existing update operations [5], [10]. However, we can
update multiple keyword-document pairs through one update
operation to improve average complexity in practice. As we
demonstrated in our experiments (see Figure 6.(a)), the average
time of updating a pair can be drastically reduced using
batching updates, and the complexity of updating a single pair
is effectively close to O(1).

Unlike prior SSE schemes supporting pattern protection,
SAP-SSE does not introduce additional computation over-
head in search operations to protect search patterns. In fact,
we asynchronously apply the index shuffle protocol to protect
search patterns. In other words, the protocol can be exe-
cuted after a series of search operations. If the protocol is
executed when clouds are idle, the search efficiency is not
affected. Therefore, although the complexity of index shuffle
is O(m), SAP-SSE may incur much less computation than
prior schemes in terms of search pattern protection [16], [17].
Additionally, we provide a configurable security policy that
allows users to customize the index shuffle protocol and make
a trade-off between security and efficiency. We notice that
existing SSE schemes do not allow users to adjust the security
level of pattern protection. However, non-sensitive information

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

1804 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

and a small amount of leakage [12]–[15] may not breach user
privacy in practice. Therefore, SAP-SSE is more practical than
existing SSE schemes to support pattern protection.

2) Communication: Unlike existing schemes, SAP-SSE
does not inject bogus files [20] or obfuscate search results [19]
to protect access patterns. Therefore, it has the optimal com-
plexity of communication. Specifically, a search operation
requires a user to generate a search token and send it to clouds.
Therefore, the communication complexity of search operations
is O(1). Since a user only needs to upload two update tokens
when updating a document containing a keyword, the commu-
nication complexity of update operations is O(1). Note that
although an index shuffle process incurs O(m) communication
between two clouds, the network bandwidth between existing
cloud providers is ample and latency is small, because their
data centers often peer with many large-scale Internet service
providers (thus they are close to Internet core). Therefore,
the inter-cloud communication overhead is minor in practice.

I. Extending SAP-SSE to Support Multiple Clouds

SAP-SSE is built in the setting of two clouds, and it
can protect search and access patterns via the index shuffle
protocol and index redistribution protocol. The security of
these protocols relies on the assumption that the clouds do
not collude with each other. To relax this security assumption,
we can extend the protocols to support k clouds (k > 2).
The extended index shuffle protocol is similar to the original
protocol. It requires k clouds to permutate each cloud’s index
entries and re-encrypt them with different shuffle numbers.
In this way, a single cloud cannot derive search patterns unless
it colludes with other k − 1 clouds. To extend the index
redistribution protocol, we decompose and encrypt the original
index to k parts and sends them to k clouds, respectively. Then,
users can rewrite each cloud’s index entries to renew search
results. Thus, a single cloud cannot infer access patterns unless
it colludes with other k−1 clouds. In conclusion, when SAP-
SSE is extended from two clouds to k clouds, we can rely on
a weaker assumption that each cloud may collude with some
clouds but does not collude with all other k − 1 clouds.

V. SECURITY ANALYSIS

In this section, we provide security proofs to analyze
the security of SAP-SSE. First, we define leakage functions
that describe leakage information in two forms. Second,
we demonstrate the security of SAP-SSE in the aspects
of confidentiality, query unforgeability, and shuffle indistin-
guishability.

A. Leakage Function

SAP-SSE provides a security policy that allows users to
adjust the allowable amount of pattern leakage between two
shuffle processes. To clarify the pattern leakage, we define
a collection of two stateful leakage functions L = (LQuery ,
LU pdate) describing what information leaks. Let api(w) and
spi(w) be the leaked access patterns and search patterns of
a keyword w between the i -th and (i+1)-th shuffle process,

and let Uw be a boolean bit revealing if the keyword w has
been updated. The leakage collection L can be presented as
follows:
• LQuery(w) = (sp1(w), ap1(w), sp2(w), ap2(w), · · ·)
• LU pdate(w) = (Uw)

B. Confidentiality

The confidentiality of SAP-SSE is captured by the real
word versus ideal world formalization [5]. It is parameterized
by the leakage collection L = (LQuery,LU pdate). More
precisely, we define two games RealA and IdealA,S with a
simulator S and an adversary A. The simulator S can simulate
real protocols with the leakage collection. The adversary A has
the view of either one cloud (S1 or S2) and can interact with
real (or simulated) protocols.

• RealA(k): A honestly triggers all operations, i.e., system
setup, user authorization, search, update, index shuffle,
and index redistribution, and then outputs a bit b.

• IdealA,S(k): A interacts with the simulated protocols
generated from S, and then outputs a bit b.

Definition 1 (Confidentiality): We say that SAP-SSE is
L-confidential against adaptive chosen keyword attacks (CKA)
if for any probabilistic polynomial-time (PPT) adversary A,
there exists a PPT simulator S such that

|Pr [RealA(k) = 1] − P[IdealA,S(k) = 1]| ≤ negl(k), (3)

where k is a security parameter and negl(k) is a negligible
function taking k as a parameter.

Now, we are ready to state the following theorem to
demonstrate the confidentiality of SAP-SSE.

Theorem 1: SAP-SSE scheme is L-confidential against
adaptive CKA attacks if H1 and TPF are pseudorandom
functions.

Proof 1: We derive some games from RealA(k) and
IdealA,S by hopping and construct a simulator S to simulate
the operations of system setup, user authorization, update,
search, index shuffle, and index redistribution in each game.

1) Game G0: We show how S simulates the operation of
system setup. Particularly, the operation is identical to the
original operation, except it does not generate a decryption
key skM

I D of ID fields, a generation key KM of token fields,
a file key K f , and a tag key KT . Therefore, we have the
following equation.

Pr [G0 = 1] = Pr [RealA(k) = 1]. (4)

2) Game G1: We show how S simulates the operation of
user authorization. When a authorization request is issued from
a user u, S chooses a random number r pk∗u→M to simulate
the corresponding authorization key. Recall that the real-world
authorization key is a re-encryption key generated from TPF.
Therefore, the advantage of the adversary distinguishing G1
from G0 can be reduced to the distinguishing advantage for
TPF. More precisely, there exists an adversary B1 such that

Pr [G1 = 1] − Pr [G0 = 1] ≤ Adv
pr f
T P F,B1

(k). (5)

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1805

3) Game G2: S simulates the operations of index redistri-
bution and index shuffle similar to the original operations in
two clouds, except it simulates TPF and H1 by selecting two
pseudorandom strings in either one cloud. As TPF is simulated
as in G1, the distinguishing advantage between G2 and G1 can
be reduced to the distinguishing advantange for H1. Formally,
there exists an adversaries B2 such that

Pr [G2 = 1] − Pr [G1 = 1] ≤ Adv
pr f
H1,B2

(k). (6)

4) Game G3: We show how S simulates update tokens
when a document f is being uploaded (the other parts of
update operations are identical to the original operations). For
each keyword w ∈ f , S queries if w is updated into the
cloud according to LU pdate(w). If w is new, S executes the
operation of search token generation similar to the original
operation, except replacing and simulating TPF and H1 as
in G2. If w has been updated, S retrieves a bloom filter from
the simulated cloud and queries the bookkeeping of simulated
H1 to get the shuffle status xw. Then, S can generate a search
token as the origianl operation. As G3 utilizes TPF and H1
simulated in G2, the distinguishing advantange between G3
and G2 is zero. Formally, we have the following equation.

Pr [G3 = 1] = Pr [G2 = 1]. (7)

5) Game G4: We show how S simulates a search token
when a keyword w is being searched (the other parts of
update operations are identical to the original operations).
Given L Query(w), if S finds that w has been searched in the
period between i -th and (i+1)-th shuffle process, S generates
the search token as same as the previous one. Otherwise,
S randomly selects an historical update token (γ ∗, κ∗, tag∗)
that is not related to queried keywords. Next, S queries the
shuffle status xw as in G3 and then computes (γ ∗)(sn1∗sn2)

xw

as a search token. Since G4 utilizes an update token simulated
in G3, the distinguishing advantange between G4 and G3 is
zero. Formally, we have the following equation.

Pr [G4 = 1] = Pr [G3 = 1]. (8)

6) Conclusion: All simulation functions in S can be
straightforwardly derived from Game G4. Therefore, by com-
bining all simulation results, we can say that for any PPT
adversary A, there exist two adversaries B1 and B2 such that

|Pr [RealA(k) = 1] − P[IdealA,S(k) = 1]|
≤ Adv

pr f
T P F,B1

(k)+ Adv
pr f
H1,B2

(k). (9)

We thus conclude that the right side probability is negl(k) if
TPF and H1 are pseudorandom functions. �

C. Query Unforgeability

We define the query unforgeability by a probabilistic game.
In this game, we consider two adversaries: an adversary
AS who manipulates a cloud and an adversary AU who
manipulates multiple users. AS and AU try to forge the honest
users’ queries (search tokens), and they can query the oracles
O1 and O2 to obtain a user’s practical queries, respectively.

Definition 2 (Query Unforgeability): We say that SAP-SSE
achieves query unforgeability if for any user u∗, there exits a
PPT adversary AS or AU such that:
Pr [q ∈ Qu∗ \ Q′u∗ : q ← AO1

S (k) or

q ← AO2
U (k)] ≤ negl(k), (10)

where Qu∗ denotes all queries from u∗, Q′u∗ denotes the
queries from O1 and O2, k is a security parameter, and
negl(k) is a negligible function taking k as a parameter.

Then, we give a security theorem and sketch a proof to
demonstrate query unforgeability as follows:

Theorem 2: SAP-SSE scheme achieves query unforgeability
if the proxy pseudorandom function TPF is collision-resistant.

Proof 2: First, AU or AS chooses a target user u∗.
Second, we consider that the two adversaries try to forge
a query σ = TPF.Rnd(w, sk∗u) issued from u∗. If AU

or AS can use a forge key skA to generate a query
σ ′ = TPF.Rnd(w, skA) that is identical to σ , then we can
say that AU or AS succeeds in forging the user’s queries.
Note that skA does not equal to sk∗u , we can conclude that
the probability of the adversary winning this forging game is
negl(k) If TPF is collision-resistant. �

D. Shuffle Indistinguishability

We define the shuffle indistinguishability based on cipher-
text indistinguishability. Here, we consider a cloud as the
adversary A, who tries to learn the relationship between
shuffled index entries and original index entries. Let I E =
{ent1, ent2, · · · } be a set of original index entries and I E ′ =
{ent ′1, ent ′2, · · · } be a set of shuffled index entries, where an
index entry enti consists of a token field γi , an ID field κi ,
and a tag field tagi .

Definition 3 (Shuffle Indistinguishability): We can say
SAP-SSE achieves shuffle indistinguishability if for any
enti ∈ I E and ent ′j ∈ I E ′, there exists a PPT adversary A
such that:

|Pr(A(enti , ent ′j))−
1

|I E | | ≤ negl(k), (11)

where k is a security parameter and negl(k) is a negligible
function taking k as a parameter.

The security of re-encryption cryptosystems and pseudo-
random functions underlie the shuffle indistinguishability: if
they achieve ciphertext indistinguishability, SAP-SSE achieves
shuffle indistinguishability. To demonstrate that, we give a
security theorem and sketch a proof as follows:

Theorem 3: SAP-SSE scheme achieves shuffle indistin-
guishability if TPF is a proxy pseudorandom function, H1 is a
pseudorandom function, and TUR is a CCA-secure universal
re-encryption scheme.

Proof 3: Here, we only analyze the index shuffle process
for π1, and the shuffle process for π2 is similar. Let Q =
(ent1, ent2, · · ·) be the original index entries, and Q′ =
(ent ′1, ent ′2, · · ·) be the shuffled index entries. Let enti be
(γi , κi , tagi). After a shuffle period, enti is shuffled to
ent ′i = (γ ′i , κ ′i , tag′i), where:
• γ ′i = TPF.ReEnc(TPF.ReEnc(γi , sn2), sn1),

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

1806 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 5. SAP-SSE Security.

• κ ′i = TUR.ReEnc(TUR.ReEnc(κi , pk M
I D), pk M

I D),
• tag′i = H1(H1(tag1, sn2), sn1).

If TPF is a proxy pseudorandom function and H1 is a
pseudorandom function, Si or Sj cannot distinguish γ ′i and
tag′i of a shuffled index entry from γ ′j and tag′j of another
shuffled index entry without knowing the other cloud’s shuffle
number. Since clouds choose different random numbers to
re-randomize ID fields, if TUR is a CCA-secure universal
re-encryption scheme, each cloud cannot distinguish κ ′i from
κ ′j without knowing the other cloud’s decryption key and
random numbers. Therefore, Si and Sj cannot recognize which
shuffled index entry is related to an original index entry.
In conclusion, the probability of the adversary A identifying
that the shuffled index entry ent ′j links to the original index
entry enti is 1/|I E |. �

VI. SYSTEM EVALUATION

We implement a prototype of SAP-SSE and conduct exper-
iments to evaluate its performance and security strength. The
experiments are performed on a PC running Ubuntu 16.04 with
four Intel Core i5 2.3GHz processors and 8GB RAM. To mea-
sure the feasibility of our scheme in practice, we use real-world
Enron email dataset .1 We randomly select 4742 documents
from this dataset as our corpus, which contains 1 million
keyword-document pairs and 79101 keywords. To facilitate the
search functionality, we utilize Porter Stemmer [30] to extract
keyword stems from documents and filter all meaningless
stopwords,2 such as “the”, “of” in our keyword space.

Moreover, we simulate user search data to prove the security
strength of SAP-SSE. We crawl user search data of 3000 key-
words between January 01, 2018, and January 07, 2018, from
Google Trend3 and simulate user search habits. We notice that
in a practical database, user queries do not always perfectly
match their search habits. Therefore, we follow the prior work
[12], [13] to simulate a query dataset by adding Gaussian noise
N(0, β ∗ σ 2) to the search habits, where σ is the standard
deviation of the search frequency in different periods, β is
the noise coefficient. We simulate three query datasets with
a 0.5 noise coefficient, 1.0 noise coefficient, and 2.0 noise
coefficient. Then, we use the three datasets to evaluate the
security and performance of our scheme.

1Enron email dataset. https://www.cs.cmu.edu/ ./enron/
2Google stopwords. https://code.google.com/archive/p/stop-words/
3Google trends. https://trends.google.com/trends/

A. Thwarting Keyword Recovery Attacks

Our quantitative method for pattern leakage assumes the
divergence of search frequency vectors can reflect the leak-
age of search patterns: if the search frequency vector of a
keyword is more diverged from others, the keyword can be
more easily recovered. To validate our quantitative method,
we exploit the attack in [12] to recover the keywords of three
simulated query datasets. Figure 5.(a) shows the validity of
our quantitative method. We can observe that the keyword
recovery rate increases along with the divergence of search
frequency vectors. When the divergence is between 750 and
1000, the keyword recovery rates on 0.5-noised and 1.0-noised
query datasets approximate 100%. Therefore, our quantitative
is valid, which means the divergence can indeed be used to
evaluate the amount of search pattern leakage.

Now we show the impact of a user-defined security policy.
The security policy defines the threshold TAP of access
pattern leakage and the threshold TS P of search pattern
leakage, respectively. Thus, we separately study how the two
thresholds thwart keyword recovery attacks. We duplicate an
access-pattern attack [14] and a search-pattern attack [12],
and measure their keyword recovery rates under different
leakage thresholds. In the access-pattern attack, clouds exploit
access patterns with 100%, 90%, and 80% prior knowledge
of documents to recover keywords. In the search-pattern
attack, clouds exploit search patterns with user search habits
to recover keywords. Figure 5.(b) and 5.(c) show that the
keyword recovery rate increases along with TAP and TS P .
Besides, we can observe low thresholds can effectively thwart
keyword recovery attacks. Particularly, TAP of 500 degrades
the recovery rate to the range between 0.5% and 4%, and TS P

of 80 degrades the recovery rate to the range between 0.5%
and 4%. In the following, we show the two thresholds only
incur 2.5ms shuffle overhead.

B. Performance of SAP-SSE

1) Update Delay: Our scheme achieves the forward secu-
rity and hides update frequency by homomorphically adding
update tokens to index entries and universally re-encrypting
ID fields. To reduce the update delay, we let clouds generate
universal re-encryption ciphertexts ahead of time and then
transform ID fields of index entries during update opera-
tions. Figure 6.(a) shows the delay of updating different
keyword-document pairs on three database scales. We can
observe that the update delay of the database containing

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1807

Fig. 6. SAP-SSE Performance.

106 keyword-document pairs is only 1-2% longer than that of
other databases. Particularly, updating 106 keyword-document
pairs (4742 documents) in three databases only incurs the
overhead of about 106 seconds, which is an acceptable update
overhead in practice.

2) Search Throughput: Figure 6.(b) shows the search
throughput in three different database scales. Since SAP-SSE
achieves sublinear search complexity, the search throughput
does not degrade significantly along with the database size
increases. We notice that the search throughput also varies
with the shuffle frequency. Namely, if an index entry is shuffled
more times, users need more time to query its shuffle status
before the search token generation. As the hash function
applied for querying shuffle statuses is much faster than
the search token generation, we can observe that a number
of index shuffle processes only incur slightly higher search
overhead. In the worst case, when searching keywords in
the 106-pair database that has been shuffled 105 times, users
can still perform 120 search operations within a second. This
results prove SAP-SSE is practical for middle-scale databases.

3) Amortized Shuffle Time: Figure 6.(c) shows the amortized
shuffle overhead under different security policies. Overall, our
security policy determines the amortized shuffle time. If we
set the higher leakage thresholds TAP and TS P , then clouds
consume lower amortized shuffle overhead. Particularly, com-
bining Figure 6.(c) with Figure 5.(b) and 5.(c), we can see
that the security policy can only incur 2.5ms amortized shuffle
overhead when the security policy degrades the keyword
recovery rate to the range between 0.3% and 4%.

Moreover, we note that only one threshold can determine the
amortized shuffle overhead at a point. Namely, if the number
of queries limited by TS P is more than the number of queries
limited by TAP , then TAP is the key factor in determining
the amortized shuffle overhead. For instance, in the case that
TAP = 1500, the amortized shuffle overhead decreases along
with TS P when TS P < 360, but it is fixed to 0.0012s when
TS P ≥ 360. Therefore, users can define the optimal TS P = 360
when TAP = 1500. Similarly, when TAP = 1000, TS P ranging
from 30 to 420 does not affect the amortized search time. Thus,
the optimal value of TS P is 30.

C. Comparison with Existing SSE Implementations
We conduct experiments to compare our implementation

with existing SSE implementations [5], [10], [17], [19], [20].
As Yao et al. [16] apply infeasible indistinguishability obfus-
cation to protect search patterns, we do not consider this
scheme in our experiments. In our experiments, all search

TABLE II

COMPARISON WITH EXISTING SSE SCHEMES THAT

SUPPORT PATTERN PROTECTION

and update operations are performed over the database of
106 keyword-document pairs. Each update operation uploads
a document containing 104 keyword-document pairs, and we
measure the average time of updating a pair.

As the schemes in [19] and [20] apply differential privacy
and padding approaches to protect access patterns, they may
not wholly protect access patterns unless incurring communi-
cation overhead as same as the size of entire documents. To
reveal the communication overhead in practice, we set their
parameters to defend 95% keyword recovery attacks, which
can satisfy the security requirement in most cases.

Table II shows a comparison of our scheme with existing
SSE schemes that support pattern protection. We can see
that our scheme is the only one that can simultaneously
protect search and access patterns, and it can be applied
to generic databases. Moreover, SAP-SSE provide pattern
protection while maintaining high efficiency. Compared to the
scheme [17] that can only protect search patterns, our schemes
provide much faster search operations and support additional
update operations. Although the schemes [19] and [20] pro-
vide faster search operations that can protect access patterns,
the built-in differential privacy and padding approaches may
not wholly hide access patterns. Additionally, they do not sup-
port update operations and incur much higher communication
overhead.

Table III shows a comparison of our scheme with some
typical SSE schemes that do not support pattern protection.
We can observe that our scheme achieves much higher search
efficiency and slightly higher update efficiency than the typical
scheme [10] that supports generic databases. Additionally,
compared to the classic scheme [5] that does not support
generic databases, our scheme achieves comparable search
efficiency and update efficiency.

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

1808 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE III

COMPARISON WITH TYPICAL SSE SCHEMES WITHOUT

ENFORCING PATTERN PROTECTION

VII. RELATED WORK

A. Searhable Symmetric Encryption
Curtmola et al. [4] propose the first SSE scheme and

provide formal security definitions. The scheme allows a
user to outsource its documents for sharing, and other users
can search over encrypted documents with sublinear search
complexity. However, the scheme does not provide update
operations and supports multiple users. Following this work,
a series of SSE schemes have been proposed to provide more
functionalities. For example, dynamic SSE schemes [5]–[7]
support efficient update operations over the encrypted docu-
ments. Multi-user SSE schemes support multiple users [4],
[10], [11] to perform search operations and update opera-
tions. Recently, researchers [8], [9] have proposed some SSE
schemes supporting rich queries. Besides, researchers also
[31]–[33] attempt to enhance SSE security. For instance, they
have applied ORAM techniques to protect access patterns,
search patterns, and communication volume. However, ORAM
techniques incur high communication overhead, a number of
interaction rounds, and large client storage. Especially when
storing large documents, ORAM techniques result in severe
performance degradation [34].

B. SSE Leakage
As ORAM techniques are not infeasible in practice,

researchers attempt to sacrifice the protection of access and
search patterns to achieve efficient SSE schemes. The leakage
of access and search patterns is often regarded as a reason-
able leakage. Compared to static schemes, existing dynamic
SSE schemes leaks more sensitive information. For instance,
the non-forward-secure schemes [5] can reveal the relation
between index entries and previous search tokens through an
update operation, and the forward-secure schemes [6], [7]
can leak the update frequency of keywords during search
operations. Note that both update frequency and non-forward
privacy can be exploited to derive search patterns. Therefore,
the leakage of dynamic schemes needs to be further stud-
ied. Moreover, since some schemes expose specific plaintext
properties to support rich queries, they often leak additional
information to clouds, such as plaintext orders [35]. In this
paper, we focus on providing protection on access patterns
and search patterns since they are two typical types of leakage
information, and their leakage is often interleaved.

C. SSE Attacks
Researchers have proposed a series of attacks to infer

encrypted keywords in SSE schemes. The most popular attack

approaches are exploiting access patterns or search patterns
with prior knowledge to recover keywords. For instance,
Isam et al. [13] propose the first access-pattern attack with
prior knowledge of entire documents. Then, Cash et al. [5]
present an improved attack, achieving the same recovery rate
with less prior knowledge. Recently, Zhang et al. [15] exploit
the leakage of update operations and inject some files to
clouds, which achieves a much higher keyword recovery rate
in non-forward-secure SSE schemes. Liu et al. [12] propose
the first search-pattern attack that derives sensitive information
from search patterns. Additionally, there are some emerging
attacks [35] that exploit other leakage information in SSE
schemes, e.g., plaintext orders and communication volume.

D. Access and Search Pattern Protection

Recently, researchers have proposed new SSE schemes to
reduce the leakage of access and search patterns. Existing SSE
schemes protect search patterns by applying heavy crypto-
graphic tools, which incur prohibitively high communication
overhead. For instance, Bosch et al. [17] propose a distributed
SSE scheme that can protect search patterns over multiple
clouds. However, the whole index should be obfuscated by
a proxy server before each search operation. That results in
a high search complexity. Liu et al. [12] utilize the indistin-
guishability obfuscation (IO) and chameleon hash to protect
search patterns. However, inefficient IO functions limit search
throughput. Although Li et al. [18] claim that their MPC-based
SSE scheme can efficiently protect search patterns, the internal
clouds can still observe search patterns. In addition, there
are several SSE schemes that can protect access patterns,
but neither of them can completely protect access patterns.
Particularly, they apply differential privacy [19] and padding
approaches [20] to make a trade-off between security and effi-
ciency. Thus, clouds can still derive some sensitive information
from access patterns.

VIII. CONCLUSION

In this paper, we design an efficient symmetric searchable
symmetric encryption, called SAP-SSE, which protects both
access patterns and search patterns in generic databases. We
present an index shuffle protocol and an index redistribution
protocol that can periodically change the contents, locations,
and ciphertexts of index entries across multiple clouds. Then,
we provide multi-user update operations and search operations
that support pattern protection. Furthermore, we design a
quantitative method to evaluate pattern leakage and allows
users to define a security policy to balance security and
efficiency. We conduct a security analysis and experiments
to evaluate the security and performance of SAP-SSE. The
security proofs and experimental results show that SAP-SSE
can effectively thwart attacks with acceptable overhead.

REFERENCES

[1] T.-S. Chou, “Security threats on cloud computing vulnerabilities,” Int.
J. Comput. Sci. Inf. Technol., vol. 5, no. 3, p. 79, 2013.

[2] D. Xiaoding Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy. (S P),
May 2000, pp. 44–55.

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: SAP-SSE: PROTECTING SEARCH PATTERNS AND ACCESS PATTERNS IN SSE 1809

[3] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[4] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proc. CCS, 2006, pp. 79–88.

[5] D. Cash et al., “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 23–26.

[6] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward pri-
vate searchable encryption from constrained cryptographic primitives,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1465–1482.

[7] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient updates,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1449–1463.

[8] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Proc.
ESORICS. Cham, Switzerland: Springer, 2015, pp. 123–145.

[9] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” in Proc. VLDB, 2019, pp. 1664–1678.

[10] F. Bao, R. H. Deng, X. Ding, and Y. Yang, “Private query on encrypted
data in multi-user settings,” in Proc. ISPEC. Heidelberg, Germany:
Springer, 2008, pp. 71–85.

[11] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting complex
queries and access policies for multi-user encrypted databases,” in
Proc. ACM workshop Cloud Comput. Secur. Workshop (CCSW), 2013,
pp. 77–88.

[12] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, “Search pattern leakage in
searchable encryption: Attacks and new construction,” Inf. Sci., vol. 265,
pp. 176–188, May 2014.

[13] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in Proc.
NDSS. Reston, VI, USA: Internet Society, 2012, p. 12.

[14] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2015, pp. 668–679.

[15] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
Proc. USENIX Secur. Berkeley, CA, USA: USENIX Association, 2016,
pp. 707–720.

[16] J. Yao, Y. Zheng, C. Wang, and X. Gui, “Enabling search over
encrypted cloud data with concealed search pattern,” IEEE Access,
vol. 6, pp. 11112–11122, 2018.

[17] C. Bosch et al., “Distributed searchable symmetric encryption,” in Proc.
12th Annu. Int. Conf. Privacy, Secur. Trust, Jul. 2014, pp. 330–337.

[18] J. Li, D. Lin, A. C. Squicciarini, J. Li, and C. Jia, “Towards privacy-
preserving storage and retrieval in multiple clouds,” IEEE Trans. Cloud
Comput., vol. 5, no. 3, pp. 499–509, Jul. 2017.

[19] G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, “Differentially private
access patterns for searchable symmetric encryption,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 810–818.

[20] L. Xu, X. Yuan, C. Wang, Q. Wang, and C. Xu, “Hardening database
padding for searchable encryption,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2019, pp. 2503–2511.

[21] C. V. Rompay, R. Molva, and M. Önen, “A leakage-abuse attack against
multi-user searchable encryption,” PoPETs, vol. 2017, no. 3, p. 168,
2017.

[22] E.-J. Goh, “Secure indexes,” Cryptol. ePrint Arch., vol. 2003, p. 216,
Oct. 2003.

[23] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in Proc. EUROCRYPT. Heidelberg, Germany:
Springer, 1998, pp. 127–144.

[24] P. Golle, M. Jakobsson, A. Juels, and P. F. Syverson, “Universal
re-encryption for mixnets,” in Proc. CT-RSA. Heidelberg, Germany:
Springer, 2004, pp. 163–178.

[25] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. EUROCRYPT. Heidelberg, Germany: Springer,
1999, pp. 223–238.

[26] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S 3 ORAM: A computation-efficient and constant client bandwidth
blowup ORAM with Shamir secret sharing,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2017, pp. 491–505.

[27] G. Cloud. (2020). Privacy. [Online]. Available: https://cloud.google.
com/security/privacy

[28] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts
for verifiable cloud computing,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2017, pp. 211–227.

[29] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: A system for
secure multi-party computation,” in Proc. 15th ACM Conf. Comput.
Commun. Secur. (CCS), 2008, pp. 257–266.

[30] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 40, no. 3,
pp. 211–218, Jul. 2006.

[31] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient obliv-
ious RAM in two rounds with applications to searchable encryption,” in
Proc. CRYPTO. Heidelberg, Germany: Springer, 2016, pp. 563–592.

[32] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured encryption and
leakage suppression,” in CRYPTO. Cham, Switzerland: Springer, 2018,
pp. 339–370.

[33] S. Kamara and T. Moataz, “Computationally volume-hiding structured
encryption,” in Proc. EUROCRYPT. Cham, Switzerland: Springer, 2019,
pp. 183–213.

[34] M. Naveed, “The fallacy of composition of oblivious RAM and search-
able encryption,” in Proc. Cryptol. ePrint Arch. (IACR), 2015, p. 668.

[35] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2017, pp. 655–672.

Qiyang Song received the master’s degree from the Department of Computer
Science and Technology, Tsinghua University. He has ever been a Visiting
Scholar at George Mason University. His current research interests include
cloud privacy and machine learning security.

Zhuotao Liu received the B.S. degree from Shanghai Jiao Tong University
and the Ph.D. degree from the University of Illinois at Urbana-Champaign.
He is currently a tenure-track Assistant Professor at Tsinghua University. Prior
to Tsinghua, he was a TechLead at Google, managing massive-scale software-
defined datacenter networks. His research interests are network security
& privacy, blockchain infrastructure, datacenter networking, and systems
security.

Jiahao Cao received the B.Eng. degree from the Beijing University of
Posts and Telecommunications in 2015, and the Ph.D. degree from Tsinghua
University in 2020. His current research interests include SDN security,
container security, and network traffic analysis.

Kun Sun (Member, IEEE) received the Ph.D. degree from the Department
of Computer Science, North Carolina State University. He is currently
an Associate Professor with the Department of Information Sciences and
Technology, George Mason University. He is also the Associate Director of the
Center for Secure Information Systems and the Director of the Sun Security
Laboratory, George Mason University. He has more than 15 years of working
experience in both industry and academia on systems and network security.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University. He has ever worked with ETH Zurich and the University of Texas
at San Antonio. He is currently an Associate Professor with the Institute
for Network Sciences and Cyberspace, Tsinghua University. His research
interests include network and system security, particularly in Internet and
cloud security, mobile security, and big data security. He is currently an
editorial board member of the IEEE TDSC and ACM DTRAP.

Cong Wang (Senior Member, IEEE) is currently an Associate Professor with
the Department of Computer Science, City University of Hong Kong. His
current research interests include data and network security, blockchain and
decentralized applications, and privacy-enhancing technologies. He is one of
the Founding Members of the Young Academy of Sciences of Hong Kong.
He received the Outstanding Researcher Award (junior faculty) in 2019,
the Outstanding Supervisor Award in 2017, and the President’s Awards
in 2019 and 2016, respectively, all from the City University of Hong Kong.
He is a co-recipient of the IEEE INFOCOM Test of Time Paper Award 2020,
the Best Student Paper Award of the IEEE ICDCS 2017, and the Best Paper
Award of the IEEE ICPADS 2018 and MSN 2015. He serves/has served as
an Associate Editor for the IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING, the IEEE INTERNET OF THINGS JOURNAL, and the
IEEE NETWORKING LETTERS, and the Journal of Blockchain Research, and
the TPC Co-Chair for a number of IEEE conferences/workshops.

Authorized licensed use limited to: George Mason University. Downloaded on January 17,2021 at 23:35:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

